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Speech and Audio Processing 
Nicholas Evans 

 
 

 
Lecture 1: Introduction 
Sound attributes: 

• Physical quantity: intensity, fundamental frequency, spectral shape, onset/offset, phase 
• Perceptual quality: loudness, pitch, timbre, timing, location 

Phoneme: minimal unit of speech sound in a language (e.g. iy in feel and ih in fill) 
 
The Short-Time Fourier Transform is a transform used to determine the sinusoidal frequency and phase of 
local sections of a signal (Wikipedia). 

STFT{x[n]}(m,𝜔𝜔) = X(m,𝜔𝜔) = � xm[n]𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗
+∞

𝑗𝑗=−∞
= � w(m − n)x[n]𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

+∞

𝑗𝑗=−∞
 

𝑤𝑤𝑚𝑚[𝑛𝑛] is a window function (e.g. rectangular) 
 
Logarithmic frame Energy: 

log𝐸𝐸 = log|𝑋𝑋[𝑘𝑘]|2 = log (𝑋𝑋𝑟𝑟2[𝑘𝑘] + 𝑋𝑋𝑖𝑖2[𝑘𝑘]) 
 
Linear Predictive Coding (LPC) 
Speech is characterized with an all-pole filter 𝐻𝐻(𝑧𝑧) = 𝑋𝑋(𝑧𝑧)

𝐸𝐸(𝑧𝑧) = 1
1−∑ 𝑎𝑎𝑘𝑘𝑧𝑧−𝑘𝑘

𝑝𝑝
𝑘𝑘=1

= 1
𝐴𝐴(𝑘𝑘) where 𝑝𝑝 is the order of the 

LPC analysis. 
Starting with 𝑥𝑥[𝑛𝑛] = ∑ 𝑎𝑎𝑘𝑘𝑥𝑥[𝑛𝑛 − 𝑘𝑘]𝑝𝑝

𝑘𝑘=1 + 𝑒𝑒[𝑛𝑛], LPC aims to predict the next sample from previous samples 
𝑥𝑥�[𝑛𝑛] = ∑ 𝑎𝑎𝑘𝑘𝑥𝑥[𝑛𝑛 − 𝑘𝑘]𝑝𝑝

𝑘𝑘=1  where 𝑒𝑒[𝑛𝑛] is the prediction error. 
Yule-Walker equations: ∑ 𝑎𝑎𝑗𝑗Φ𝑚𝑚[𝑖𝑖, 𝑗𝑗]𝑝𝑝

𝑗𝑗=1 = Φ𝑚𝑚[𝑖𝑖, 0] for 𝑖𝑖 = 1, … , 𝑝𝑝; where the correlation coefficient is defined 
as Φ𝑚𝑚[𝑖𝑖, 𝑗𝑗] = ∑ 𝑥𝑥𝑚𝑚[𝑛𝑛 − 𝑖𝑖]𝑥𝑥𝑚𝑚[𝑛𝑛 − 𝑗𝑗]𝑗𝑗 . 
 
How to choose 𝑝𝑝? Larger values give lower prediction error (in practice between 10 and 14) 
 
Cepstral Processing 
This is another way (which works better in practice) to separate source and filter. 
How? Homomorphic transformation to transform convolution into sum and then easily subtract 𝑒𝑒: 𝑥𝑥�[𝑛𝑛] =
𝐷𝐷(𝑥𝑥[𝑛𝑛]) = 𝐷𝐷(𝑒𝑒[𝑛𝑛] ∗ ℎ[𝑛𝑛]) = �̂�𝑒[𝑛𝑛] + ℎ�[𝑛𝑛] 
 
Real cepstrum of signal 𝑐𝑐[𝑛𝑛] = 1

2𝜋𝜋 ∫ ln�𝑋𝑋�𝑒𝑒𝑗𝑗𝑗𝑗�� 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝜔𝜔𝜋𝜋
−𝜋𝜋  

For speech signals 𝑐𝑐𝑎𝑎[𝑛𝑛] = 1
𝑁𝑁
∑ ln|𝑋𝑋𝑎𝑎[𝑘𝑘]| 𝑒𝑒

𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘
𝑁𝑁𝑁𝑁−1

𝑗𝑗=0  where 𝑋𝑋𝑎𝑎[𝑘𝑘] = ∑ 𝑥𝑥[𝑛𝑛]𝑒𝑒−
𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘
𝑁𝑁𝑁𝑁−1

𝑗𝑗=0  

 
Filter: what was said vs. Pitch: who said it (fundamental frequency of the speech). 
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Lecture 2: Towards Modeling, Classification and Recognition 
Modeling: a way to describe a collection of data. 
Vector Quantization: regrouping closest vectors together, e.g. k-means . We should define a distance measure, 
for example: 

• Euclidean distance 𝑑𝑑(𝑣𝑣, 𝜇𝜇𝑖𝑖) = ‖𝑣𝑣 − 𝜇𝜇𝑖𝑖‖2 = (𝑣𝑣 − 𝜇𝜇𝑖𝑖)𝑇𝑇(𝑣𝑣 − 𝜇𝜇𝑖𝑖) 
• Mahalanobis distance 𝑑𝑑(𝑣𝑣, 𝜇𝜇𝑖𝑖) = (𝑣𝑣 − 𝜇𝜇𝑖𝑖)𝑇𝑇Σ−1(𝑣𝑣 − 𝜇𝜇𝑖𝑖) (use the information of alignment with the 

covariance). 
 
 
Lecture 3: Deterministic Methods of Automatic Speech Recognition 
Two approaches to speech recognition (it’s important to know the difference!): 

• Deterministic: dynamic time warping 
• Stochastic: Hidden Markov Models 

 
Dynamic Time Warping 
An algorithm to measure similarities between two time series (Video). 
Different acoustic performances are never the same: different speaking rate, rate fluctuations. 
Those causes should not contribute to dissimilarities. 
 
We will consider two speech patterns 𝑋𝑋 = �𝑥𝑥1, … , 𝑥𝑥𝑇𝑇𝑥𝑥� and 𝑌𝑌 = �𝑦𝑦1, … ,𝑦𝑦𝑇𝑇𝑦𝑦� with (potentially different) lengths 

𝑇𝑇𝑥𝑥 and 𝑇𝑇𝑦𝑦. 
The dissimilarity between 𝑋𝑋 and 𝑌𝑌 will be defined by a distance function 𝑑𝑑�𝑖𝑖𝑥𝑥 , 𝑖𝑖𝑦𝑦� 
 
Alignment 
Linear time normalization: 𝑖𝑖𝑦𝑦 = 𝑇𝑇𝑦𝑦

𝑇𝑇𝑥𝑥
𝑖𝑖𝑥𝑥 and 𝑑𝑑(𝑋𝑋,𝑌𝑌) = ∑ 𝑑𝑑�𝑖𝑖𝑥𝑥 , 𝑖𝑖𝑦𝑦�

𝑇𝑇𝑥𝑥
𝑖𝑖𝑥𝑥=1  

We use two 
warping 

functions to 
𝜙𝜙𝑥𝑥 and 𝜙𝜙𝑦𝑦 to 

relate 
indices of 
the two 

speech 
patterns. 

Those 
function will 
point to the 
vector that 

we should be comparing. 
𝑖𝑖𝑥𝑥 = 𝜙𝜙𝑥𝑥(𝑘𝑘) and 𝑖𝑖𝑦𝑦 = 𝜙𝜙𝑦𝑦(𝑘𝑘) for 𝑘𝑘 = 1, … ,𝑇𝑇 

Then a global pattern dissimilarity could be used 𝑑𝑑𝜙𝜙(𝑋𝑋,𝑌𝑌) = ∑ 𝑑𝑑 �𝜙𝜙𝑥𝑥(𝑘𝑘),𝜙𝜙𝑦𝑦(𝑘𝑘)�𝑇𝑇
𝑘𝑘=1

𝑚𝑚(𝑘𝑘)
𝑀𝑀𝜙𝜙

  

https://www.youtube.com/watch?v=_K1OsqCicBY&t
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𝑚𝑚 is a nonnegative path weighting the path and 𝑀𝑀𝜙𝜙 is a path normalizing scheme. 
Choosing the path? Test all paths and choose the one giving the min distortion 𝑑𝑑 = min

𝜙𝜙
𝑑𝑑𝜙𝜙 

 
Time-normalization constraints: 

• Endpoints constraints: 𝜙𝜙𝑥𝑥/𝑦𝑦(1) = 1 and 𝜙𝜙𝑥𝑥/𝑦𝑦(𝑇𝑇) = 𝑇𝑇𝑥𝑥/𝑦𝑦  
• Monotonicity constraints: 𝜙𝜙(𝑘𝑘 + 1) ≥ 𝜙𝜙(𝑘𝑘) we never go back in time 
• Local continuity constraints: 𝜙𝜙(𝑘𝑘 + 1) − 𝜙𝜙(𝑘𝑘) ≤ 1 

 
 
Lectures 5, 6 & 7: Stochastic Methods of Automatic Speech Recognition 
Given an Automatic Speech Recognition (ASR) system, we will calculate the probability of a word given an 

observation arg max
𝑊𝑊

𝑃𝑃(𝑊𝑊|𝑂𝑂) = arg max
𝑊𝑊

𝑃𝑃(𝑊𝑊)𝑃𝑃�𝑂𝑂�𝑊𝑊�
𝑃𝑃(𝑂𝑂) = arg max

𝑊𝑊
𝑃𝑃(𝑊𝑊)𝑃𝑃(𝑂𝑂|𝑊𝑊). 

𝑃𝑃(𝑊𝑊) is the language model and 𝑃𝑃(𝑂𝑂|𝑊𝑊) is the acoustic model. 
 
Stochastic: instead of comparing instances (two time series) like in DTW, we compare an instance to a trained 
model (it has mean and variance). 
 
Hidden Markov Models (HMMs) are generative models, i.e. what is the probability that this model could 
have generated the sequence of observations we have. 
 
First order Markov chain: 𝑃𝑃(𝑞𝑞𝑡𝑡 = 𝑗𝑗|𝑞𝑞𝑡𝑡−1 = 𝑖𝑖, 𝑞𝑞𝑡𝑡−2 = 𝑘𝑘, … ) = 𝑃𝑃(𝑞𝑞𝑡𝑡 = 𝑗𝑗|𝑞𝑞𝑡𝑡−1 = 𝑖𝑖) 
State transition probability 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑃𝑃(𝑞𝑞𝑡𝑡 = 𝑗𝑗|𝑞𝑞𝑡𝑡−1 = 𝑖𝑖) this is the probability of going 
to state 𝑗𝑗 at time 𝑡𝑡 from a state 𝑖𝑖 at time 𝑡𝑡 − 1 (independent of time!) 
So given 𝑖𝑖, ∑ 𝑎𝑎𝑖𝑖𝑗𝑗𝑗𝑗 = 1 
 
Hidden: we cannot observe the state sequence from the observations, but we can 
infer it. 
A very complex model can describe well the situation but will not generalize. 
 
State-transition probability distribution: 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑃𝑃(𝑞𝑞𝑡𝑡+1 = 𝑗𝑗|𝑞𝑞𝑡𝑡 = 𝑖𝑖), 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁 
Observation symbol probability distribution: 𝑏𝑏𝑗𝑗(𝑘𝑘) = 𝑃𝑃(𝑜𝑜𝑡𝑡 = 𝑣𝑣𝑘𝑘|𝑞𝑞𝑡𝑡 = 𝑗𝑗), 1 ≤ 𝑘𝑘 ≤ 𝑀𝑀 
The initial state distribution: 𝜋𝜋𝑖𝑖 = 𝑃𝑃(𝑞𝑞1 = 𝑖𝑖) 
The model 𝜆𝜆 = (𝐴𝐴,𝐵𝐵,Π) 
 
Example: the urn-and-ball model 
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Problem 1 – Evaluation (estimate what the word is) 
Given observations 𝑂𝑂 and a model 𝜆𝜆, how to compute 𝑃𝑃(𝑂𝑂|𝜆𝜆)? 
We must consider every single state sequence (𝑁𝑁𝑇𝑇 possible one) since we do not know the real state sequence. 
For one particular state sequence 𝑞𝑞 = (𝑞𝑞1 … 𝑞𝑞𝑇𝑇), the probability of 𝑂𝑂 given 𝑞𝑞 is 𝑃𝑃(𝑂𝑂|𝑞𝑞, 𝜆𝜆) = ∏ 𝑃𝑃(𝑜𝑜𝑡𝑡|𝑞𝑞𝑡𝑡 , 𝜆𝜆)𝑡𝑡  
Statistical independence: 𝑃𝑃(𝑂𝑂|𝑞𝑞, 𝜆𝜆) = 𝑏𝑏𝑞𝑞1(𝑜𝑜1) … 𝑏𝑏𝑞𝑞𝑇𝑇(𝑜𝑜𝑇𝑇) 
The probability of a state sequence 𝑃𝑃(𝑞𝑞|𝜆𝜆) = 𝜋𝜋𝑞𝑞1𝑎𝑎𝑞𝑞1𝑞𝑞2 … 𝑎𝑎𝑞𝑞𝑇𝑇−1𝑞𝑞𝑇𝑇 
Joint probability 𝑃𝑃(𝑂𝑂, 𝑞𝑞|𝜆𝜆) = 𝑃𝑃(𝑂𝑂|𝑞𝑞, 𝜆𝜆)𝑃𝑃(𝑞𝑞|𝜆𝜆) 
Finally, we sum over all possible 𝑞𝑞: 𝑃𝑃(𝑂𝑂|𝜆𝜆) = ∑ 𝑃𝑃(𝑂𝑂|𝑞𝑞, 𝜆𝜆)𝑃𝑃(𝑞𝑞|𝜆𝜆)𝑞𝑞 = ∑ 𝜋𝜋𝑞𝑞1𝑏𝑏𝑞𝑞1(𝑜𝑜1)𝑎𝑎𝑞𝑞1𝑞𝑞2 …𝑎𝑎𝑞𝑞𝑇𝑇−1𝑞𝑞𝑇𝑇𝑏𝑏𝑞𝑞𝑇𝑇(𝑜𝑜𝑇𝑇)𝑞𝑞1,…,𝑞𝑞𝑇𝑇  
This is so costly; we need a more efficient procedure! 
 
The forward procedure 
We consider the forward variable 𝛼𝛼𝑡𝑡(𝑖𝑖) = 𝑃𝑃(𝑜𝑜1 … 𝑜𝑜𝑡𝑡 , 𝑞𝑞𝑡𝑡 = 𝑖𝑖|𝜆𝜆), i.e. the probability of partial observation 
sequence 𝑜𝑜1 … 𝑜𝑜𝑡𝑡 and state 𝑖𝑖 at time 𝑡𝑡 given 𝜆𝜆 to remove redundant calculations. And we solve for 𝛼𝛼𝑡𝑡(𝑖𝑖): 

1. Initialization: 𝛼𝛼1(𝑖𝑖) = 𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖(𝑜𝑜1), 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 
2. Induction: 𝛼𝛼𝑡𝑡+1(𝑗𝑗) = �∑ 𝛼𝛼𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑗𝑗𝑖𝑖 �𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡+1), 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇 − 1 
3. Termination: 𝑃𝑃(𝑂𝑂|𝜆𝜆) = ∑ 𝛼𝛼𝑇𝑇(𝑖𝑖)𝑁𝑁

𝑖𝑖=1  
Benefit: we go from 2𝑇𝑇𝑁𝑁𝑇𝑇 to 𝑁𝑁2𝑇𝑇 calculations. 
 
The backward procedure 
In the same manner, we can consider a backward variable 𝛽𝛽𝑡𝑡(𝑖𝑖) = 𝑃𝑃(𝑜𝑜𝑡𝑡+1 … 𝑜𝑜𝑇𝑇|𝑞𝑞𝑡𝑡 = 𝑖𝑖, 𝜆𝜆), i.e. the probability 
of partial observation sequence 𝑜𝑜𝑡𝑡+1 … 𝑜𝑜𝑇𝑇 given state 𝑖𝑖 at time 𝑡𝑡 and the model. And we solve for 𝛽𝛽𝑡𝑡(𝑖𝑖): 

1. Initialization: 𝛽𝛽𝑇𝑇(𝑖𝑖) = 1, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 
2. Induction: 𝛽𝛽𝑡𝑡(𝑖𝑖) = ∑ 𝑎𝑎𝑖𝑖𝑗𝑗𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗)𝑗𝑗 , 𝑡𝑡 = 𝑇𝑇 − 1, … ,1 𝑎𝑎𝑛𝑛𝑑𝑑 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 

 
Problem 2 – Decoding / State assignment 
Given observations 𝑂𝑂 and a model 𝜆𝜆, how to determine the state sequence 𝑞𝑞 = (𝑞𝑞1 … 𝑞𝑞𝑇𝑇) that explains 𝑂𝑂? 
 
On solution is to choose states 𝑞𝑞𝑡𝑡 that are individually most likely. So we define the variable 

𝛾𝛾𝑡𝑡(𝑖𝑖) = 𝑃𝑃(𝑞𝑞𝑡𝑡 = 𝑖𝑖|𝑂𝑂, 𝜆𝜆) =
𝑃𝑃(𝑂𝑂, 𝑞𝑞𝑡𝑡 = 𝑖𝑖|𝜆𝜆)

𝑃𝑃(𝑂𝑂|𝜆𝜆) =
𝑃𝑃(𝑂𝑂, 𝑞𝑞𝑡𝑡 = 𝑖𝑖|𝜆𝜆)
∑ 𝑃𝑃(𝑂𝑂, 𝑞𝑞𝑡𝑡 = 𝑖𝑖|𝜆𝜆)𝑖𝑖

=
𝛼𝛼𝑡𝑡(𝑖𝑖)𝛽𝛽𝑡𝑡(𝑖𝑖)
∑ 𝛼𝛼𝑡𝑡(𝑖𝑖)𝛽𝛽𝑡𝑡(𝑖𝑖)𝑖𝑖

 

We can solve for the individually most likely state at each time 𝑡𝑡: 
𝑞𝑞𝑡𝑡∗ = arg max

𝑖𝑖
𝛾𝛾𝑡𝑡(𝑖𝑖) , 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇 

This does not consider the probability of sequences! Solution: find the single best state sequence. 
Viterbi Algorithm: we define the quantity 𝛿𝛿𝑡𝑡(𝑖𝑖) = max

𝑞𝑞1,…,𝑞𝑞𝑡𝑡−1
𝑃𝑃(𝑞𝑞1 … 𝑞𝑞𝑡𝑡 = 𝑖𝑖, 𝑜𝑜1 … 𝑜𝑜𝑡𝑡|𝜆𝜆) which is the best score 

along a single path that ends in state 𝑖𝑖. By induction we have 𝛿𝛿𝑡𝑡+1(𝑗𝑗) = �max
𝑖𝑖
𝛿𝛿𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑗𝑗� 𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡+1) 

1. Initialization: 𝛿𝛿1(𝑖𝑖) = 𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖(𝑜𝑜1), 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 and 𝜓𝜓1(𝑖𝑖) = 0 
2. Recursion: 𝛿𝛿𝑡𝑡(𝑗𝑗) = max

𝑖𝑖
�𝛿𝛿𝑡𝑡−1(𝑖𝑖)𝑎𝑎𝑖𝑖𝑗𝑗�𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡) and 𝜓𝜓𝑡𝑡(𝑗𝑗) = arg max

𝑖𝑖
�𝛿𝛿𝑡𝑡−1(𝑖𝑖)𝑎𝑎𝑖𝑖𝑗𝑗� 

3. Termination: 𝑃𝑃∗ = max
𝑖𝑖
𝛿𝛿𝑇𝑇(𝑖𝑖) and 𝑞𝑞∗ = arg max

𝑖𝑖
𝛿𝛿𝑇𝑇(𝑖𝑖) 

4. Path Backtracking: 𝑞𝑞𝑡𝑡∗ = 𝜓𝜓𝑡𝑡+1(𝑞𝑞𝑡𝑡+1∗ ), 𝑡𝑡 = 𝑇𝑇 − 1, … ,1 
 
Problem 3 – Learning / Optimization / Training / Estimation 
How to adjust/estimate the model parameters (𝐴𝐴,𝐵𝐵,Π) to maximize 𝑃𝑃(𝑂𝑂|𝜆𝜆)? 
Problem: no closed form analytical solution. 
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We define the variable 𝜁𝜁𝑡𝑡(𝑖𝑖, 𝑗𝑗) the probability of being in state 𝑖𝑖 at 𝑡𝑡 and at state 𝑗𝑗 at 𝑡𝑡 + 1. 

𝜁𝜁𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑞𝑞𝑡𝑡 = 𝑖𝑖, 𝑞𝑞𝑡𝑡+1 = 𝑗𝑗|𝑂𝑂, 𝜆𝜆) =
𝑃𝑃(𝑞𝑞𝑡𝑡 = 𝑖𝑖, 𝑞𝑞𝑡𝑡+1 = 𝑗𝑗,𝑂𝑂|𝜆𝜆)

𝑃𝑃(𝑂𝑂|𝜆𝜆) =
𝛼𝛼𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑗𝑗𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗)

∑ ∑ 𝛼𝛼𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑗𝑗𝑏𝑏𝑗𝑗(𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗)𝑗𝑗𝑖𝑖
 

We can write 𝛾𝛾𝑡𝑡(𝑖𝑖) = ∑ 𝜁𝜁𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑗𝑗  the probability of being in state 𝑖𝑖 at time 𝑡𝑡. 
∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)𝑡𝑡  = a quantity that describes the expected number of times state 𝑖𝑖 was visited. 
∑ 𝜁𝜁𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑡𝑡  = a quantity that describes the expected number of transitions from 𝑖𝑖 to 𝑗𝑗. 
 
Estimate the model parameters: 
𝜋𝜋�𝑖𝑖 = expected frequency of in state 𝑖𝑖 at time 1 = 𝛾𝛾1(𝑖𝑖) 
𝑎𝑎�𝑖𝑖𝑗𝑗 = expected number of transition from 𝑖𝑖 to 𝑗𝑗 /  expected number of transition from 𝑖𝑖 = ∑ 𝜁𝜁𝑡𝑡(𝑖𝑖,𝑗𝑗)𝑡𝑡

∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)𝑡𝑡
 

𝑏𝑏�𝑗𝑗(𝑘𝑘) = expected number of times in 𝑗𝑗 with 𝑣𝑣𝑘𝑘 / expected number of times in 𝑗𝑗 = 
∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)𝑡𝑡,𝑜𝑜𝑡𝑡=𝑣𝑣𝑘𝑘

∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)𝑡𝑡
 

 
 


