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Introduction 
What’s machine learning? 
Learning from experience (data) to be able to: make predictions, find similarities, find patterns, discover 
knowledge, etc. There are 3 types of learning: 

• Supervised: learn from labeled data 
o Regression: continuous functions 
o Classification: separate data 

• Unsupervised: no target or label 
• Reinforcement: take actions to maximize rewards 

 

PART I: Supervised Learning 
To predict 𝑦𝑦 using 𝑥𝑥 without knowing the true relationship between them: 𝑦𝑦 = 𝑓𝑓(𝒙𝒙) ∈ ℝ. 
Training set (input-output set): {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁} 
Goal: finding a good predictor 𝑔𝑔 such as 𝑦𝑦� = 𝑔𝑔(𝒙𝒙) ≃ 𝑦𝑦 for unseen (𝒙𝒙,𝑦𝑦) pairs. 
 
 
CHAPTER 1: Linear Models for Regression (Week 1) 
A linear regressor is a linear function of 𝑥𝑥: 𝑦𝑦 = 𝑓𝑓(𝒙𝒙,𝒘𝒘) = 𝑤𝑤0 + ∑𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 where 𝒘𝒘 = {𝑤𝑤𝑗𝑗} are the parameters. 
Model fitting: estimate the modal’s parameters 𝑦𝑦� = 𝑔𝑔(𝒙𝒙) = 𝑤𝑤�0 + ∑𝑤𝑤�𝑗𝑗𝑥𝑥𝑗𝑗 
We introduce a loss function to quantify how well/bad 𝑦𝑦� approximates 𝑦𝑦, e.g. ℓ(𝑦𝑦,𝑦𝑦�) = (𝑦𝑦 − 𝑦𝑦�)2 
We use the loss function to compute average loss over all the data ℒ𝑤𝑤 = 1

𝑁𝑁
∑ℓ(𝑦𝑦,𝑦𝑦�) and argmin

w
ℒ𝑤𝑤 

 
A discriminant interpretation: least squares 
Optimization: Least squares is a method for estimating the unknown parameter 𝑤𝑤 of a linear model by 
minimizing the sum of the squares of the differences between the observed output 𝑦𝑦𝑖𝑖 and those predicted by 
the model 𝑦𝑦�𝑖𝑖: argmin

𝐰𝐰
ℒ𝒘𝒘 = argmin

𝐰𝐰

1
𝑁𝑁
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 = argmin

𝐰𝐰

1
𝑁𝑁
∑�𝑦𝑦𝑖𝑖 − (𝑤𝑤0 + 𝑤𝑤1𝑥𝑥𝑖𝑖)�

2 (Here 𝑥𝑥 ∈ ℝ1). 

Let’s introduce the matrix notation: 

𝑿𝑿 = �
1 ⋯ 𝑥𝑥1𝐷𝐷
⋮ ⋱ ⋮
1 ⋯ 𝑥𝑥𝑁𝑁𝑁𝑁

�, 𝒘𝒘 = �
𝑤𝑤0
⋮
𝑤𝑤𝐷𝐷

� and 𝒚𝒚 = �
𝑦𝑦1
⋮
𝑦𝑦𝑁𝑁
� where 𝑁𝑁 is the number of samples and 𝐷𝐷 the dim of each 𝑥𝑥𝑖𝑖. 

Using those notations, we get argmin
𝐰𝐰

ℒ𝒘𝒘 = argmin
𝐰𝐰

1
𝑁𝑁

(𝒚𝒚 − 𝑿𝑿𝑿𝑿)𝑇𝑇 (𝒚𝒚 − 𝑿𝑿𝑿𝑿) and 𝜕𝜕ℒ𝒘𝒘
𝜕𝜕𝒘𝒘

= 0 ⇒ 𝒘𝒘� = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒚𝒚. 

Predictions: now we can use estimated 𝒘𝒘�  to predict new values: 𝒚𝒚�𝒏𝒏𝒏𝒏𝒏𝒏 = 𝑿𝑿𝒏𝒏𝒏𝒏𝒏𝒏𝒘𝒘�  where 𝑿𝑿𝒏𝒏𝒏𝒏𝒏𝒏 unseen data. 
“All models are wrong, but some are useful.” 

We can add polynomial features 𝑦𝑦� = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 and this is still considered to be linear model. 
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A probabilistic interpretation: maximum likelihood estimation 
Additive error model: 𝑦𝑦 = 𝑓𝑓(𝑥𝑥,𝒘𝒘) + 𝜖𝜖, where the error 𝜖𝜖: 

• Can be positive or negative 
• Is independent for each 𝑥𝑥 
• Can be modeled as a continuous random variable that follows a Gaussian distribution 

Density function of 𝜖𝜖: 𝑝𝑝(𝜖𝜖𝑖𝑖) = 1
√2𝜋𝜋𝜎𝜎

exp �− 𝜖𝜖𝑖𝑖
2

2𝜎𝜎2
�~𝑁𝑁(0,𝜎𝜎2) 

Density function of 𝑦𝑦: 𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊;𝒘𝒘,𝜎𝜎2) = 1
√2𝜋𝜋𝜎𝜎

exp �− �𝑦𝑦𝑖𝑖−𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊�
2

2𝜎𝜎2
�~𝑁𝑁(𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊,𝜎𝜎2) 

Likelihood function: 𝐿𝐿(𝑤𝑤,𝜎𝜎) = ∏𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊;𝒘𝒘,𝜎𝜎2) which is NOT a probability. 
We maximize 𝐿𝐿(𝑤𝑤,𝜎𝜎) or log 𝐿𝐿(𝑤𝑤,𝜎𝜎) because it’s simpler. 

ℓ(𝒘𝒘,𝜎𝜎2) = log 𝐿𝐿(𝑤𝑤,𝜎𝜎) = log∏𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊;𝒘𝒘,𝜎𝜎2) = ⋯ = −𝑁𝑁 log√2𝜋𝜋𝜎𝜎 −
1

2𝜎𝜎2
∑(𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊)2 

𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝒘𝒘

= 0 ⇒ 𝒘𝒘� = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒚𝒚 and 𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝜕𝜕

= 0 ⇒ 𝜎𝜎�2 = 1
𝑁𝑁

(𝒚𝒚 − 𝑿𝑿𝑿𝑿)𝑇𝑇(𝒚𝒚 − 𝑿𝑿𝑿𝑿) 

Prediction: to predict new values, we use 𝒚𝒚�𝒏𝒏𝒏𝒏𝒏𝒏 = 𝐸𝐸[𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛|𝑿𝑿;𝒘𝒘,𝜎𝜎2] = 𝒘𝒘�𝑇𝑇𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛. 
𝜎𝜎 measures the degree of uncertainty of our prediction. 
 
 
CHAPTER2: Linear Models for Classification (Week 2) 
 
Probability Reminders: 

1- Sampling from a Gaussian with mean 𝑚𝑚 and the adding a constant 𝐶𝐶 is the same as sampling from a 
Gaussian with mean 𝑚𝑚 + 𝐶𝐶. 

2- Two random variables are independent if 𝑝𝑝(𝐴𝐴 = 𝑎𝑎,𝐵𝐵 = 𝑏𝑏) = 𝑝𝑝(𝐴𝐴 = 𝑎𝑎)𝑝𝑝(𝐵𝐵 = 𝑏𝑏). 
3- Join probability: for two discrete random variables 𝑋𝑋 and 𝑌𝑌, 𝑃𝑃(𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦) is the probability that 

𝑋𝑋 has value 𝑥𝑥 and 𝑌𝑌 has value 𝑦𝑦. For continuous random variables, 𝑝𝑝(𝑥𝑥,𝑦𝑦) is the join density function 
(pdf). 

4- Conditional probabilities: when variables are independent, we can work with conditioning: 
𝑝𝑝(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖;𝑤𝑤,𝜎𝜎2). Which allow to decompose join probability (or pdf): 𝑃𝑃(𝐴𝐴,𝐵𝐵) = 𝑃𝑃(𝐴𝐴|𝐵𝐵)𝑃𝑃(𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴) (and 𝑝𝑝(𝑥𝑥,𝑦𝑦) = 𝑝𝑝(𝑥𝑥|𝑦𝑦)𝑝𝑝(𝑦𝑦) = 𝑝𝑝(𝑦𝑦|𝑥𝑥)𝑝𝑝(𝑥𝑥)). 

5- Conditional expectation: expectation is the average of a large number of independent realizations of 
a random variable: Ε[𝑥𝑥] = ∑ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑥𝑥 = ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑. Conditional expectation: expected value of 𝑦𝑦 given 
𝒙𝒙: 𝔼𝔼[𝑦𝑦|𝑥𝑥] = ∫𝑦𝑦𝑦𝑦(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑑𝑑. 

6- Covariance: joint variability of two variables: 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌) = 𝔼𝔼�𝑋𝑋 − 𝔼𝔼[𝑋𝑋]�𝔼𝔼�𝑌𝑌 − 𝔼𝔼[𝑌𝑌]� = 𝔼𝔼[𝑋𝑋𝑋𝑋] −
𝔼𝔼[𝑋𝑋]𝔼𝔼[𝑌𝑌] 

 
 
Classification 
When the output is discrete, 𝑦𝑦 represents labels or classes and we denote 𝒞𝒞 the set of possible classes. 
The main goal is to predict the class 𝑦𝑦 = 𝑐𝑐 ∈ 𝒞𝒞 using 𝒙𝒙. 
The input space is divided into decision regions whose boundaries are called decision boundaries. 
So how to represent classes: 

• Binary case: 𝑦𝑦 ∈ {0,1} 
• Multiple classes: 1 − 𝑜𝑜𝑜𝑜 − 𝐾𝐾 coding scheme: 𝑦𝑦 = (0 ⋯ 1 ⋯ 0)𝑇𝑇 
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Learning and Expected Loss 
The new loss function in a 𝐾𝐾 × 𝐾𝐾 matrix with 𝐾𝐾 = |𝒞𝒞| 
Our goal is to minimize 𝔼𝔼[𝑳𝑳] = ∑ ∑ ∫𝐿𝐿𝑘𝑘𝑘𝑘𝑝𝑝(𝒙𝒙,𝒞𝒞𝑘𝑘)𝑑𝑑𝒙𝒙𝑗𝑗𝑘𝑘  by minimizing ∑ 𝐿𝐿𝑘𝑘𝑘𝑘𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙)𝑘𝑘  
Minimization problem: 𝑦𝑦�(𝒙𝒙) = argmin

c∈𝒞𝒞
∑ 𝐿𝐿𝑘𝑘𝑘𝑘𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙)𝑘𝑘 = argmin

c∈𝒞𝒞
�1 − 𝑝𝑝(𝒞𝒞𝑐𝑐|𝒙𝒙)� = argmax

c∈𝒞𝒞
�𝑝𝑝(𝒞𝒞𝑐𝑐|𝒙𝒙)� 

Bayes classifier: we classify the most likely class using the conditional discrete distribution (the value of a 
feature 𝑥𝑥𝑖𝑖 is independent of the value of any other feature 𝑥𝑥𝑘𝑘≠𝑖𝑖). 
How does that work? (with an example from Wikipedia) 
The goal is to compare, for a given sample 𝒙𝒙, 𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙) = 𝑝𝑝(𝒞𝒞𝑘𝑘|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for each class 𝒞𝒞𝑘𝑘. 
Under the independence assumptions: 

𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙) =
𝑝𝑝(𝒞𝒞𝑘𝑘)𝑝𝑝(𝒙𝒙|𝒞𝒞𝑘𝑘)

𝑝𝑝(𝒙𝒙) =
𝑝𝑝(𝒞𝒞𝑘𝑘)𝑝𝑝(𝑥𝑥1|𝒞𝒞𝑘𝑘) … 𝑝𝑝(𝑥𝑥𝑛𝑛|𝒞𝒞𝑘𝑘)

∑ 𝑝𝑝(𝒞𝒞𝑘𝑘)𝑝𝑝(𝒙𝒙|𝒞𝒞𝑘𝑘)𝑘𝑘
=

𝑝𝑝(𝒞𝒞𝑘𝑘)𝑝𝑝(𝑥𝑥1|𝒞𝒞𝑘𝑘) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝒞𝒞𝑘𝑘)
∑ 𝑝𝑝(𝒞𝒞𝑘𝑘)𝑝𝑝(𝑥𝑥1|𝒞𝒞𝑘𝑘) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝒞𝒞𝑘𝑘)𝑘𝑘

 

NB: the denominator is constant for a given sample 𝒙𝒙, so it can be ignored. 
Example: classify whether a given person is a male or a female based on the measured features. Using a 
Gaussian distribution assumption, we calculate mean and variance of every feature (height, weight, and foot 
size) for every class (male and female) then test for a given 𝒙𝒙 by comparing posterior male and female: 

𝑝𝑝(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑥𝑥) =
𝑝𝑝(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑝𝑝(ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑝𝑝(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
= 

0.5 × 1
�2𝜋𝜋𝜎𝜎12

exp �−(𝑥𝑥1 − 𝜇𝜇1)2
2𝜎𝜎12

� × 1
�2𝜋𝜋𝜎𝜎22

exp �−(𝑥𝑥2 − 𝜇𝜇2)2
2𝜎𝜎22

� × 1
�2𝜋𝜋𝜎𝜎32

exp �−(𝑥𝑥3 − 𝜇𝜇3)2
2𝜎𝜎32

�

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

 
Methods of classification 

1. Linear regression 
For a binary class problem: 𝒙𝒙 ∈ 𝒞𝒞1 if 𝑦𝑦�(𝒙𝒙) ≥ 0 else 𝒙𝒙 ∈ 𝒞𝒞2. 
Where 𝑦𝑦�(𝒙𝒙) = 𝑤𝑤�0 + ∑ 𝑤𝑤�𝑗𝑗𝑥𝑥𝑗𝑗𝐷𝐷

𝑗𝑗=1 = 𝒘𝒘�𝑇𝑇𝒙𝒙   
Figure: the decision surface (in red) is orthogonal to 𝒘𝒘 and its displacement from 
the origin is controlled by 𝑤𝑤0. If we consider an arbitrary point 𝑥𝑥 = 𝑥𝑥⊥ + 𝑟𝑟 𝑤𝑤

∥𝑤𝑤∥
⇒

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑤𝑤0 = 𝑤𝑤𝑇𝑇𝑥𝑥⊥ + 𝑤𝑤0 + 𝑟𝑟 𝑤𝑤
𝑇𝑇𝑤𝑤
∥𝑤𝑤∥

 and finally 𝑟𝑟 = 𝑦𝑦(𝑥𝑥)
∥𝑤𝑤∥

 is the signed distance of 𝑥𝑥 

from the decision surface. 
 
For a K-class problem: each category is coded via an indicator variable 𝒚𝒚 = (𝑦𝑦1, … ,𝑦𝑦𝐾𝐾)𝑇𝑇. Given 𝑁𝑁 the number 
of total samples, we build the indicator response matrix 𝒀𝒀 of size 𝑁𝑁 × 𝐾𝐾. 
Algorithm: 

• Fit a linear model for each column of 𝒀𝒀. 
• The weight matrix is given by 𝑾𝑾� = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒀𝒀 of dimension (𝑑𝑑 + 1) × 𝐾𝐾 (coefficient vector for each 

response column 𝒚𝒚𝒌𝒌). 
• A new observation 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 is classified by: 

o Computing the fitted output 𝑓𝑓(𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏) = 𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏𝑾𝑾� (a 𝐾𝐾 vector). 
o Predict the class corresponding to the highest score 𝑦𝑦�(𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏) =

argmax
k

𝑓𝑓(𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏). 
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Decision boundaries: for any two classes 𝑗𝑗 and 𝑘𝑘, the decision boundary is a (𝑑𝑑 − 1)-dimensional subset in 
ℝ𝑑𝑑 defined by the values of 𝒙𝒙 satisfying 𝒘𝒘𝑘𝑘

𝑇𝑇𝒙𝒙 = 𝒘𝒘𝑗𝑗𝑇𝑇𝒙𝒙. We get a one-versus-one classifier with 𝐾𝐾(𝐾𝐾 − 1)/2 
boundaries. 
This approach is problematic for 𝐾𝐾 > 2 because we can get ambiguous regions in of the input space (figure).  
 

2. Linear Discriminant Analysis 
To use Bayes classifier, we have to estimate 𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙). The LDA estimates 𝑝𝑝(𝒙𝒙|𝒞𝒞𝑘𝑘) and 𝑝𝑝(𝒞𝒞𝑘𝑘) under two 
assumptions: 

• Data within each class is normally distributed: 𝑝𝑝(𝒙𝒙|𝒞𝒞𝑘𝑘) = 𝒩𝒩(𝜇𝜇𝑘𝑘 , Σ). 
• Each class has its own mean 𝜇𝜇𝑘𝑘 but all classes share a common covariance matrix Σ ∈ ℝ𝑑𝑑×𝑑𝑑. 

𝒩𝒩(𝝁𝝁𝒌𝒌,𝚺𝚺) =
1

(2𝜋𝜋)𝑑𝑑/2 |𝚺𝚺|1/2 exp �−
1
2

(𝒙𝒙 − 𝝁𝝁𝒌𝒌)𝑇𝑇Σ−1(𝒙𝒙 − 𝝁𝝁𝒌𝒌)� 

Formulation:  
• Bayes classifier: 𝑦𝑦�(𝒙𝒙) = argmax

k
𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙) = argmax

k
𝑝𝑝(𝒙𝒙|𝒞𝒞𝑘𝑘)𝑝𝑝(𝒞𝒞𝑘𝑘). 

• Bayes theorem: 𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙) = 𝜋𝜋𝑘𝑘𝒩𝒩(𝝁𝝁𝒌𝒌,𝚺𝚺)
𝑝𝑝(𝒙𝒙)  where 𝑝𝑝(𝒙𝒙|𝒞𝒞𝑘𝑘) = 𝒩𝒩(𝝁𝝁𝒌𝒌,𝚺𝚺) and 𝑝𝑝(𝒞𝒞𝑘𝑘) = 𝜋𝜋𝑘𝑘 

• We can then define the rule: 𝑦𝑦�𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) = argmax
k

𝜋𝜋𝑘𝑘𝒩𝒩(𝝁𝝁𝒌𝒌,𝚺𝚺) 

• Since log(−) is monotone, we can maximize 𝛿𝛿𝑘𝑘(𝒙𝒙) = log𝜋𝜋𝑘𝑘𝒩𝒩(𝝁𝝁𝒌𝒌,𝚺𝚺) = 𝒙𝒙𝑇𝑇𝚺𝚺−1𝝁𝝁𝒌𝒌 −
1
2
𝝁𝝁𝒌𝒌𝚺𝚺−1𝝁𝝁𝒌𝒌 +

log𝜋𝜋𝑘𝑘 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
In practice, we don’t know the Gaussian distribution parameters, but we can estimate them: 

• 𝜋𝜋�𝑘𝑘 = 𝑁𝑁𝑘𝑘
𝑁𝑁

 : number of samples in each class divided by the total number of samples. 

• 𝝁𝝁𝒌𝒌 = 1
𝑁𝑁𝑘𝑘
∑𝒙𝒙𝒊𝒊 : the mean value of each class 

• 𝚺𝚺� = 1
𝑁𝑁−𝐾𝐾

∑ ∑ (𝒙𝒙𝒊𝒊 − 𝝁𝝁�𝒌𝒌)(𝒙𝒙𝒊𝒊 − 𝝁𝝁�𝒌𝒌)𝑇𝑇𝑦𝑦𝑖𝑖∈𝑘𝑘𝑘𝑘  : the covariance matrix (we normalize by 𝑁𝑁 − 𝐾𝐾 to get unbiased 

estimator). 
Finally, 𝛿̂𝛿𝑘𝑘(𝒙𝒙) = 𝑥𝑥𝑇𝑇𝚺𝚺�−1𝝁𝝁�𝒌𝒌 −

1
2
𝝁𝝁�𝑘𝑘𝑇𝑇𝚺𝚺�−1𝝁𝝁�𝒌𝒌 + log𝜋𝜋�𝑘𝑘 : linear in 𝒙𝒙, because it follows the form 𝒂𝒂𝒌𝒌 + 𝒃𝒃𝒌𝒌𝑻𝑻𝒙𝒙. 

The decision boundary between two classes 𝑘𝑘 and 𝑗𝑗 is given by �𝒙𝒙: 𝛿̂𝛿𝑘𝑘(𝒙𝒙) = 𝛿̂𝛿𝑗𝑗(𝒙𝒙)�. 
The Quadratic Discriminant Analysis removes the assumption of equal covariance among all classes, so the 
decision boundaries are determined by quadratic functions. 
 

3. Logistic Regression 
Let’s introduce the log-odds of class 𝑘𝑘: 

log
𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙)
𝑝𝑝(𝒞𝒞𝑘𝑘� |𝒙𝒙) = log

𝜋𝜋𝑘𝑘
𝜋𝜋𝑘𝑘�

−
1
2

(𝝁𝝁𝒌𝒌 + 𝝁𝝁𝒌𝒌�)𝑇𝑇𝚺𝚺−1(𝝁𝝁𝒌𝒌 − 𝝁𝝁𝒌𝒌�) + 𝒙𝒙𝑇𝑇𝚺𝚺−1(𝝁𝝁𝒌𝒌 − 𝝁𝝁𝒌𝒌�) = 𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙 

So why not estimating 𝑤𝑤 and 𝑤𝑤0 directly rather than passing through 𝜇̂𝜇, Σ� and 𝜋𝜋�? → Logistic Regression. 
A binary class problem: 𝑝𝑝(𝒞𝒞1|𝒙𝒙) = 𝑝𝑝(𝒞𝒞1)𝑝𝑝(𝒙𝒙|𝒞𝒞1)

𝑝𝑝(𝒞𝒞1)𝑝𝑝(𝒙𝒙|𝒞𝒞1)+𝑝𝑝(𝒞𝒞2)𝑝𝑝(𝒙𝒙|𝒞𝒞2) = 1
1+exp(−𝑎𝑎) = 𝜎𝜎(𝑎𝑎) where 𝑎𝑎 = log 𝑝𝑝(𝒞𝒞1)𝑝𝑝(𝒙𝒙|𝒞𝒞1)

𝑝𝑝(𝒞𝒞2)𝑝𝑝(𝒙𝒙|𝒞𝒞2) 

Finally, we have 𝑝𝑝(𝒞𝒞1|𝒙𝒙) = 𝜎𝜎(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙). Now our goal is to estimate 𝑤𝑤0 and 𝑤𝑤. 
Given a training set {(𝒙𝒙𝒊𝒊,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁} where 𝑦𝑦𝑖𝑖 ∈ {0,1}, we will use maximum likelihood to fit our model:  

𝐿𝐿(𝒘𝒘) = �𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊;𝒘𝒘) = �𝜎𝜎(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙)𝑦𝑦𝑖𝑖�1 − 𝜎𝜎(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙)�1−𝑦𝑦𝑖𝑖 

And the log-likelihood can be written: 
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ℓ(𝒘𝒘) = log 𝐿𝐿(𝒘𝒘) = � log𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊;𝒘𝒘) = �𝑦𝑦𝑖𝑖 log𝜎𝜎(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙) + (1 − 𝑦𝑦𝑖𝑖) log�1 − 𝜎𝜎(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙)�

= �𝑦𝑦𝑖𝑖(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙) − log(1 + exp(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙)) 

Fitting and Predicting: the coefficients are estimated via Maximum Likelihood Estimation: 

𝒘𝒘�𝟎𝟎,𝒘𝒘� = argmax
𝐰𝐰

�𝑦𝑦𝑖𝑖(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙) − log(1 + exp(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙)) 

And given a new sample: 𝑦𝑦�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝒙𝒙) = 1 𝑖𝑖𝑖𝑖 𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙 > 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0. 
A multiple-class problem: K-class 
We chose a base class, let’s say class 𝐾𝐾 and we only need to specify the decision boundary between class 𝑗𝑗 
and the base class 𝐾𝐾. 

⎩
⎨

⎧ log 𝑝𝑝(𝒞𝒞1|𝒙𝒙)
𝑝𝑝(𝒞𝒞𝐾𝐾|𝒙𝒙) = 𝑤𝑤10 + 𝒘𝒘𝟏𝟏

𝑻𝑻𝒙𝒙
⋮

log 𝑝𝑝(𝒞𝒞𝐾𝐾−1|𝒙𝒙)
𝑝𝑝(𝒞𝒞𝐾𝐾|𝒙𝒙) = 𝑤𝑤(𝐾𝐾−1)0 + 𝒘𝒘𝑲𝑲−𝟏𝟏

𝑻𝑻 𝒙𝒙
, where 𝑝𝑝(𝒞𝒞𝑘𝑘|𝒙𝒙) = exp�𝑤𝑤𝑘𝑘0+𝒘𝒘𝒌𝒌

𝑻𝑻𝒙𝒙�
1+∑ exp�𝑤𝑤𝑙𝑙0+𝒘𝒘𝒍𝒍

𝑻𝑻𝒙𝒙�𝐾𝐾−1
𝑙𝑙=1

 and 𝑝𝑝(𝒞𝒞𝐾𝐾|𝒙𝒙) = 1
1+∑ exp�𝑤𝑤𝑙𝑙0+𝒘𝒘𝒍𝒍

𝑻𝑻𝒙𝒙�𝐾𝐾−1
𝑙𝑙=1

. 

 
Estimating 𝒘𝒘� using Newton-Raphson algorithm 
It’s an iterative algorithm used to find a zero of a function 𝑓𝑓, i.e. to find 𝜃𝜃 such that 𝑓𝑓(𝜃𝜃) = 0. So, we can 
apply it to 𝑓𝑓 = ∂ℓ

∂𝐰𝐰
 to find a point where the log-likelihood is maximal. 

The update rule is 𝜃𝜃 ← 𝜃𝜃 − 𝑓𝑓(𝜃𝜃)
𝑓𝑓′(𝜃𝜃), so we will have 𝒘𝒘 ← 𝒘𝒘−𝑯𝑯−1∇𝒘𝒘ℓ(𝒘𝒘). 

We will minimize the cross-entropy error function: 𝐸𝐸(𝒘𝒘) = −ℓ(𝒘𝒘) = −∑𝑦𝑦𝑖𝑖 log𝑦𝑦�𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦�𝑖𝑖) 
First derivative: ∇𝒘𝒘𝐸𝐸(𝒘𝒘) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝒘𝒘
= ∑(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝒙𝒙𝒊𝒊 (using the fact that 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝜎𝜎(1 − 𝜎𝜎)) 

Second derivative: 𝜕𝜕2𝐸𝐸
𝜕𝜕𝒘𝒘𝜕𝜕𝒘𝒘𝑇𝑇 = ∑𝑦𝑦�𝑖𝑖(1 − 𝑦𝑦�𝑖𝑖)𝒙𝒙𝒊𝒊𝒙𝒙𝒊𝒊𝑻𝑻 

Using matrix notations: 𝜕𝜕𝜕𝜕 = 𝑿𝑿𝑇𝑇(𝑦𝑦� − 𝑦𝑦) and 𝜕𝜕2𝐸𝐸 = 𝑿𝑿𝑇𝑇𝑹𝑹𝑹𝑹 where 𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑦𝑦�𝑖𝑖(1 − 𝑦𝑦�𝑖𝑖) 
We get 𝒘𝒘(𝑛𝑛𝑛𝑛𝑛𝑛) = 𝒘𝒘(𝑜𝑜𝑜𝑜𝑜𝑜) − (𝑿𝑿𝑇𝑇𝑹𝑹𝑹𝑹 )−1𝑿𝑿𝑇𝑇(𝑦𝑦� − 𝑦𝑦) = (𝑿𝑿𝑇𝑇𝑹𝑹𝑹𝑹 )−1𝑿𝑿𝑇𝑇𝑹𝑹�𝑿𝑿𝒘𝒘(𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑹𝑹−1(𝑦𝑦� − 𝑦𝑦)� = (𝑿𝑿𝑇𝑇𝑹𝑹𝑹𝑹 )−1𝑿𝑿𝑇𝑇𝑹𝑹𝑹𝑹 

where 𝒛𝒛 = 𝑿𝑿𝒘𝒘(𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑹𝑹−1(𝑦𝑦� − 𝑦𝑦) is an N-dimensional vector. 
NB: 

• At each iteration 𝑅𝑅 and 𝑧𝑧 change as they depend on 𝑤𝑤, we have to update them at each iteration. 
• We know that the algorithm converges as the function 𝑓𝑓 is concave. 
• Overshooting can occur. 
• Computationally expensive due to the Hessian matrix. 

 
 
CHAPTER 3: Optimization (Week 3) 
Unconstrained optimization problem: minimize 𝑓𝑓(𝜃𝜃), find 𝜃𝜃∗ such as ∀𝜃𝜃, 𝑓𝑓∗ = 𝑓𝑓(𝜃𝜃∗) ≤ 𝑓𝑓(𝜃𝜃). 
We are assuming that 𝑓𝑓 is differentiable. 

• Analytically solvable. E.g. argmin
w

(𝒚𝒚 − 𝑿𝑿𝑿𝑿)𝑇𝑇(𝒚𝒚 − 𝑿𝑿𝑿𝑿) → 𝒘𝒘∗ = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒚𝒚. 

• Using an iterative algorithm. E.g. 𝑤𝑤(𝑛𝑛𝑛𝑛𝑛𝑛) = argmin(𝒛𝒛 − 𝑿𝑿𝑿𝑿)𝑇𝑇𝑹𝑹(𝒛𝒛 − 𝑿𝑿𝑿𝑿) 
o Can be descent: 𝑓𝑓�𝜃𝜃(𝑘𝑘+1)� < 𝑓𝑓�𝜃𝜃(𝑘𝑘)� 
o 𝑓𝑓�𝜃𝜃(𝑘𝑘)� converges but not necessarily to 𝑓𝑓∗ 
o Stop when reaching maximum number or iterations or when ∥ ∇𝑓𝑓�𝜃𝜃(𝑘𝑘)� ∥≤ 𝜖𝜖 
o Non-heuristic: does not depend on 𝜃𝜃(1) 
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Constrained optimization problem: minimize 𝑓𝑓(𝜃𝜃) subject to 𝑔𝑔𝑖𝑖(𝜃𝜃) = 𝑐𝑐𝑖𝑖 and ℎ𝑗𝑗(𝜃𝜃) ≥ 𝑑𝑑𝑗𝑗 
 
Gradient-based methods 
We assume that we have an unconstrained problem and 𝑓𝑓 is continuous and convex. 
Initialize 𝜃𝜃1 ∈ ℝ, and while ∥ ∇𝑓𝑓(𝜃𝜃) ∥> 𝜖𝜖 do 𝜃𝜃 ← 𝜃𝜃 − 𝛼𝛼∇𝑓𝑓(𝜃𝜃). 
 
 
CHAPTER 4: Neural Networks (Week 5) 
The perceptron 
Goal: find a separating hyperplane by minimizing the distance of misclassified points to the decision boundary. 
Assumptions: 

• Data is linearly separable 
• Binary classification using labels 𝑦𝑦 ∈ {−1,1} 

Formulation: 𝑦𝑦(𝒙𝒙) = 𝑓𝑓(𝒘𝒘𝑇𝑇𝒙𝒙) where 𝑓𝑓(𝑎𝑎) = �+1,𝑎𝑎 ≥ 0
−1,𝑎𝑎 < 0 and 𝑥𝑥 = �𝑥𝑥𝑖𝑖1 �,𝑤𝑤 = �𝑤𝑤𝑖𝑖

𝑏𝑏 � 

Patterns 𝑥𝑥𝑛𝑛 in 𝒞𝒞1 will have 𝒘𝒘𝑇𝑇𝒙𝒙𝒏𝒏 > 0 and patterns 𝑥𝑥𝑛𝑛 in 𝒞𝒞2 will have 𝒘𝒘𝑇𝑇𝒙𝒙𝒏𝒏 < 0. Using the fact that 𝑦𝑦 ∈
{−1,1}, all patterns will satisfy 𝒘𝒘𝑇𝑇𝒙𝒙𝒏𝒏𝑦𝑦𝑛𝑛 > 0. 
The error function, also called perceptron criterion, is given by: 𝐸𝐸𝑃𝑃(𝑤𝑤) = −∑ 𝒘𝒘𝑇𝑇𝒙𝒙𝒏𝒏𝑦𝑦𝑛𝑛𝑛𝑛∈ℳ  where ℳ denotes 
the set of all misclassified patterns. 
Finding the weights: we apply the stochastic gradient decent algorithm to this function: 

𝒘𝒘(𝑘𝑘+1) = 𝒘𝒘(𝑘𝑘) − 𝛼𝛼∇𝐸𝐸𝑃𝑃(𝒘𝒘) = 𝒘𝒘(𝑘𝑘) + 𝛼𝛼𝒙𝒙𝒏𝒏𝑦𝑦𝑛𝑛 
At every step 𝑘𝑘, we have to check every misclassified pattern 𝒙𝒙𝒏𝒏 and update 𝒘𝒘(𝑘𝑘). 
+ If data is linearly separable, then the perceptron guarantees a convergence to this solution. 
− The number of steps to convergence might be large. 
− The algorithm does not converge when data is not linearly separable (XOR function). 
 
Neural Networks 
 

Reminder 
The linear models for regression and classification are based on linear combination of fixed nonlinear basis 
functions Φ𝑗𝑗(𝑥𝑥) and take the form 𝑦𝑦(𝒙𝒙,𝒘𝒘) = 𝑓𝑓�∑𝑤𝑤𝑗𝑗Φ𝑗𝑗(𝒙𝒙)� where 𝑓𝑓(. ) is a nonlinear activation function in 
the case of classification and is the identity in the case of regression. 
 
Goal: making the basis functions Φ𝑗𝑗(𝑥𝑥) depend on parameters and allow these parameters to be adjusted 
along with the coefficients �𝑤𝑤𝑗𝑗� during training.  
Feed-forward Network Functions: this is a series of functional transformations aka Multilayer Perceptron 

Step 1: construct 𝑀𝑀 linear combinations of the input variables 𝑥𝑥1, … , 𝑥𝑥𝐷𝐷 in the form 

𝑎𝑎𝑗𝑗 = � 𝑤𝑤𝑗𝑗𝑗𝑗
(1)𝑥𝑥𝑖𝑖 + 𝑤𝑤𝑗𝑗0

(1)

𝑖𝑖
 

 Step 2: transform each activation using a differentiable, nonlinear activation function to give 
𝑧𝑧𝑗𝑗 = ℎ�𝑎𝑎𝑗𝑗� 

 Step 3: these values are again linearly combined to give output unit activations 

𝑎𝑎𝑘𝑘 = � 𝑤𝑤𝑘𝑘𝑘𝑘
(2)𝑧𝑧𝑗𝑗 + 𝑤𝑤𝑘𝑘0

(2)

𝑗𝑗
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 Step 4: the output unit activations are transformed using an activation function to give 𝑦𝑦𝑘𝑘 
 
We can combine these various stages to give the overall network function that takes the form 

𝑦𝑦𝑘𝑘(𝒙𝒙,𝒘𝒘) = 𝜎𝜎 �� 𝑤𝑤𝑘𝑘𝑘𝑘
(2)ℎ �� 𝑤𝑤𝑗𝑗𝑗𝑗

(1)𝑥𝑥𝑖𝑖 + 𝑤𝑤𝑗𝑗0
(1)

𝑖𝑖
� + 𝑤𝑤𝑘𝑘0

(2)

𝑗𝑗
� 

Thus, the neural network model is simply a nonlinear function from a set of input variables {𝑥𝑥𝑖𝑖} to a set of 
output variables {𝑦𝑦𝑘𝑘} controlled by a vector 𝒘𝒘 of adjustable parameters. 
 
NB 

• 𝑖𝑖 = 1, … ,𝐷𝐷 index of dimension of the input 𝒙𝒙 
• 𝑗𝑗 = 1, … ,𝑀𝑀 index of linear combinations (number of 

neurons in the first hidden layer) 
• 𝑘𝑘 = 1, … ,𝐾𝐾 index of linear combinations (number of 

neurons in the output layer) 
• (1) and (2) indicate the layer index 
• 𝑤𝑤𝑗𝑗𝑗𝑗

(1) are weights and 𝑤𝑤𝑗𝑗0
(1) are biases 

• Common activation functions: sigmoid 𝜎𝜎(𝑎𝑎) = 1
1+𝑒𝑒−𝑎𝑎 

, 

tanh 𝑎𝑎 = 𝑒𝑒𝑎𝑎−𝑒𝑒−𝑎𝑎

𝑒𝑒𝑎𝑎+𝑒𝑒−𝑎𝑎
, ReLu ℎ(𝑎𝑎) = max(0,𝑎𝑎) 

 
 
The bias parameter can be absorbed into the set of weight parameters, so that the final function becomes 

𝑦𝑦𝑘𝑘(𝒙𝒙,𝒘𝒘) = 𝜎𝜎 �� 𝑤𝑤𝑘𝑘𝑘𝑘
(2)ℎ �� 𝑤𝑤𝑗𝑗𝑗𝑗

(1)𝑥𝑥𝑖𝑖
𝑖𝑖=0

�
𝑗𝑗=0

� ⇔ 𝑦𝑦(𝒙𝒙,𝒘𝒘) = 𝑓𝑓 �� 𝑤𝑤𝑗𝑗Φ𝑗𝑗(𝒙𝒙)
𝑗𝑗

� 

 
Network Training: Backpropagation 
We introduce the error function 𝐸𝐸(𝑤𝑤) = ∑ 𝐸𝐸𝑛𝑛(𝑤𝑤)𝑛𝑛  and we will try to estimate ∇𝐸𝐸𝑛𝑛(𝒘𝒘). 
Consider first a simple linear model 𝑦𝑦�𝑘𝑘 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖 , together with an error function that, for a particular input 
pattern 𝑛𝑛, takes the form 𝐸𝐸𝑛𝑛 = 1

2
∑ (𝑦𝑦�𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑛𝑛𝑛𝑛)2𝑘𝑘 , where 𝑦𝑦�𝑛𝑛𝑛𝑛 = 𝑦𝑦�𝑘𝑘(𝒙𝒙𝒏𝒏,𝒘𝒘). 

The gradient of this error function with respect to a weight 𝑤𝑤𝑗𝑗𝑗𝑗 is 
𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

= �𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑛𝑛𝑛𝑛�𝑥𝑥𝑛𝑛𝑛𝑛 = �𝑦𝑦�𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑛𝑛𝑛𝑛�𝑥𝑥𝑛𝑛𝑛𝑛 

which can be interpreted as an error signal 𝑦𝑦�𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑛𝑛𝑛𝑛 associated to the output end of the link 𝑤𝑤𝑗𝑗𝑗𝑗 and the 
variable 𝑥𝑥𝑛𝑛𝑛𝑛. 
As we saw in feed-forward network, each unit computes a weighted sum of its inputs 𝑎𝑎𝑗𝑗 = ∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑧𝑧𝑖𝑖𝑖𝑖  which is 
then transformed by a nonlinear activation function ℎ(. ) to give the activation 𝑧𝑧𝑗𝑗 = ℎ�𝑎𝑎𝑗𝑗� = ℎ�∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑧𝑧𝑖𝑖𝑖𝑖 �. 
Let’s consider the derivative of the 𝐸𝐸𝑛𝑛 with respect to a weight 𝑤𝑤𝑗𝑗𝑗𝑗 for every input pattern 𝑛𝑛 

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

=
𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑎𝑎𝑗𝑗

𝜕𝜕𝑎𝑎𝑗𝑗
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

= 𝛿𝛿𝑗𝑗
𝜕𝜕𝑎𝑎𝑗𝑗
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

= 𝛿𝛿𝑗𝑗𝑧𝑧𝑖𝑖 

So, we have to calculate the value of 𝛿𝛿𝑗𝑗 for every hidden and output unit and then 
apply the previous formula. 
→ For the output units 𝛿𝛿𝑘𝑘 = 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝑎𝑎𝑘𝑘
= 𝑦𝑦�𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑛𝑛𝑛𝑛 = 𝑦𝑦�𝑘𝑘 − 𝑦𝑦𝑘𝑘 (we omit 𝑛𝑛 to simplify 

notations) 
→ For the hidden units 𝛿𝛿𝑗𝑗 = 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝑎𝑎𝑗𝑗
= ∑ 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝑎𝑎𝑘𝑘

𝜕𝜕𝑎𝑎𝑘𝑘
𝜕𝜕𝑎𝑎𝑗𝑗𝑘𝑘 = ∑ 𝛿𝛿𝑘𝑘

𝜕𝜕
𝜕𝜕𝑎𝑎𝑗𝑗

�∑ 𝑤𝑤𝑘𝑘𝑘𝑘ℎ�𝑎𝑎𝑗𝑗�𝑗𝑗 �𝑘𝑘 = ℎ′�𝑎𝑎𝑗𝑗�∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘  
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 Error Backpropagation 

1. Apply an input vector 𝑥𝑥𝑛𝑛 to the network and forward propagate using 𝑎𝑎𝑗𝑗 = ∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑧𝑧𝑖𝑖𝑖𝑖  and 𝑧𝑧𝑗𝑗 = ℎ�𝑎𝑎𝑗𝑗� 
2. Evaluate the 𝛿𝛿𝑘𝑘 for all output units using 𝛿𝛿𝑘𝑘 = 𝑦𝑦�𝑘𝑘 − 𝑦𝑦𝑘𝑘 
3. Backpropagate the 𝛿𝛿’s using 𝛿𝛿𝑗𝑗 = ℎ′�𝑎𝑎𝑗𝑗�∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘  to obtain 𝛿𝛿𝑗𝑗 for each hidden unit in the network 
4. Use 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
= 𝛿𝛿𝑗𝑗𝑧𝑧𝑖𝑖 to evaluate the required derivatives 

 
Properties of MLP 

• Universal Boolean functions: can compute any Boolean function (e.g. can implement XOR) 
• Universal classification functions: 
• Universal approximators: can approximate continuous functions on compact subsets of ℝ𝑑𝑑 

 
Summary on MLP 

• Advantages 
o Very general, can be applied in many situations 
o Powerful according to theory 
o Efficient according to practice 

• Drawbacks 
o Training is often slow 
o Difficult choice of number of layers & neurons 

 
 
CHAPTER 5: Relevant Machine Learning Topics – Part I (Week 7) 
In this chapter, we will answer a few questions: 

• Will our models perform well on testing data? 
• In the available training data enough? 
• Which model should be chosen? 

 
Definitions 
Generalization: ability of predictor to perform well on unseen data. 
Model Selection: task of selecting a model from a set of candidate models given the data. 

 
Bias-Variance Tradeoff 
Training dataset 𝒯𝒯 = {(𝒙𝒙𝒊𝒊,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁}: an i.i.d. drawn from some distribution 𝑃𝑃(𝑋𝑋,𝑌𝑌) 
Expected label: 𝑦𝑦�(𝑥𝑥) = ∫𝑦𝑦𝑦𝑦(𝑦𝑦|𝑥𝑥) 𝜕𝜕𝜕𝜕 = 𝔼𝔼𝑦𝑦|𝒙𝒙[𝑌𝑌] 
Machine learning algorithm 𝒜𝒜 
Learning process: using 𝒯𝒯 to learn a hypothesis (model/classifier). Formally: ℎ𝒯𝒯 = 𝒜𝒜(𝒯𝒯) 
Expected classifier: ℎ� = 𝔼𝔼𝒯𝒯~𝑃𝑃𝑁𝑁[ℎ𝒯𝒯] = ∫ℎ𝒯𝒯(𝒙𝒙) Pr(𝒯𝒯) 𝜕𝜕𝜕𝜕 
Expected test error: 𝔼𝔼(𝒙𝒙,𝑦𝑦)~𝑃𝑃[(ℎ𝒯𝒯(𝒙𝒙) − 𝑦𝑦)2] = ∫∫(ℎ𝒯𝒯(𝒙𝒙) − 𝑦𝑦)2 Pr(𝒙𝒙,𝑦𝑦) 𝜕𝜕𝒙𝒙𝜕𝜕𝜕𝜕 
Expected test error of 𝒜𝒜: evaluates the quality of ML algorithm 𝒜𝒜 with respect to data distribution 𝑃𝑃(𝑋𝑋,𝑌𝑌) 



Machine Learning and Intelligent Systems – Fall 2019  EURECOM 

Mokhles BOUZAIEN 9 29.01.2020 

𝔼𝔼(𝒙𝒙,𝑦𝑦)~𝑃𝑃
𝒯𝒯~𝑃𝑃𝑁𝑁

[(ℎ𝒯𝒯(𝒙𝒙) − 𝑦𝑦)2] = ���(ℎ𝒯𝒯(𝒙𝒙) − 𝑦𝑦)2 Pr(𝒙𝒙,𝑦𝑦) Pr(𝒯𝒯) 𝜕𝜕𝒙𝒙𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

𝔼𝔼𝑥𝑥,𝑦𝑦,𝒯𝒯[(ℎ𝒯𝒯(𝒙𝒙) − 𝑦𝑦)2] = 𝔼𝔼𝑥𝑥,𝒯𝒯 ��ℎ𝒯𝒯(𝒙𝒙) − ℎ�(𝑥𝑥)�
2
� + 𝔼𝔼𝑥𝑥,𝑦𝑦[(𝑦𝑦�(𝑥𝑥) − 𝑦𝑦)2] + 𝔼𝔼𝑥𝑥�ℎ�(𝑥𝑥) − 𝑦𝑦�(𝑥𝑥)�2 

• Variance: error caused from sensitivity to fluctuations in the training set. High variance can cause an 
algorithm to model random noise in the training set, rather than the intended outputs: overfitting. 

• Squared Bias: error caused by the simplifying assumptions built into the model (e.g. the approximation 
of a nonlinear using a learning method for linear models): underfitting. 

• Noise: this is the error associated to the data. No matter how good the model is, data will always 
have certain amount of noise that cannot be removed. 

 
Regularization 
Large sensitivity can lead to poor performance of the model: ideally 𝒘𝒘 should not be too large. 
We introduce a regularizer to control the size of 𝒘𝒘: 𝑅𝑅(𝒘𝒘) = ∑𝑤𝑤𝑖𝑖2 or 𝑅𝑅(𝒘𝒘) = ∑|𝑤𝑤𝑖𝑖|. 
Now the predictor should also avoid being too sensitive using a regularization parameter 𝜆𝜆 ≥ 0 

ℒ(𝑤𝑤) + 𝜆𝜆𝜆𝜆(𝑤𝑤) =
1
𝑁𝑁
�ℓ𝑤𝑤(𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑤𝑤) +

𝜆𝜆
𝑁𝑁
�𝑤𝑤𝑖𝑖2 

argmin
w

1
𝑁𝑁

(𝒚𝒚 − 𝑿𝑿𝑿𝑿)𝑇𝑇(𝒚𝒚 − 𝑿𝑿𝑿𝑿) +
𝜆𝜆
𝑁𝑁
𝒘𝒘𝑇𝑇𝒘𝒘 

Which gives 𝒘𝒘� = (𝑿𝑿𝑇𝑇𝑿𝑿 + 𝜆𝜆𝑰𝑰)−1𝑿𝑿𝑇𝑇𝒚𝒚 
When to use regularization? 

• If 𝐷𝐷 > 𝑁𝑁, so it’s impossible to invert 𝑿𝑿𝑇𝑇𝑿𝑿 to get 𝑤𝑤� = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒚𝒚 
• To reduce variance: ridge regression shrinks to zero the size of the 

coefficients. 
• To perform feature selection: Lasso can reduce variance and lead 

some weights to go to zero. 
 
Validation 
We split data into training data and testing data (e.g. 80/20 or 90/10) and apply the algorithm on the testing 
data. The testing error should be worse than the training one but acceptable. 
Overfitting occurs when the model fits the data very well → Failure to generalize. 
Underfitting occurs when the model cannot capture the structure of data → High training error. 
Regularization to avoid overfitting, but how to choose parameters introduced by regularization? Validation. 
 
K-fold Cross-validation: 

1. The data is divided into 𝐾𝐾 folds (a common value 𝐾𝐾 = 5). 
2. Fit a model to all data except the 𝑘𝑘𝑡𝑡ℎ fold. 
3. Test on the 𝑘𝑘𝑡𝑡ℎ fold. 
4. Average error across folds. 
5. Use resulting average error of each model to judge. 
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CHAPTER 6: Support Vector Machines (Week 8) 
SVM is a decision machine that makes prediction like the perceptron. But SVMs aim to find the boundary 
by maximizing the margin between classes. 
 
 
 
 
 
 
 
 
Goal: 
maximize the margin width (the distance between the decision boundary and the nearest points of each class). 
The location of this boundary is determined by a subset of data points, known as support vectors. 
 

Some Linear Algebra 
𝐿𝐿: hyperplane defined by 𝑓𝑓(𝑥𝑥) = 𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 0 

1. For any two points 𝑥𝑥1 and 𝑥𝑥2 ∈ 𝐿𝐿,𝑤𝑤𝑇𝑇(𝑥𝑥1 − 𝑥𝑥2) = 0 so 𝑤𝑤∗ = 𝑤𝑤/‖𝑤𝑤‖  is a vector normal to 𝐿𝐿 
2. For any 𝑥𝑥0 ∈ 𝐿𝐿, 𝑤𝑤𝑇𝑇𝑥𝑥0 = −𝑤𝑤0 
3. The signed distance between any point 𝑥𝑥 to 𝐿𝐿 is the projection of 𝑥𝑥 − 𝑥𝑥0 into the normal vector 

𝑤𝑤∗. (𝑥𝑥 − 𝑥𝑥0) = 1
‖𝑤𝑤‖

. (𝑤𝑤𝑇𝑇𝑥𝑥 − 𝑤𝑤𝑇𝑇𝑥𝑥0) = 1
‖𝑤𝑤‖

. (𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑤𝑤0) = 𝑦𝑦
‖𝑤𝑤‖

 

 
 
Formalization 

• Training data: {𝒙𝒙𝒊𝒊,𝑦𝑦𝑖𝑖} for 𝑖𝑖 = 1, … ,𝑁𝑁, 𝑥𝑥𝑖𝑖 ∈ ℝ𝐷𝐷 and 𝑦𝑦𝑖𝑖 ∈ {−1,1} 
• 𝑦𝑦𝑖𝑖 is the side of the perfect decision boundary the point 𝑥𝑥𝑖𝑖 is on 
• Our model: 𝑦𝑦�(𝒙𝒙) = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑤𝑤0 
• Correctly classified points: 𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑤𝑤0) > 0 
• Distance of 𝑥𝑥𝑖𝑖 of the perfect boundary 𝐿𝐿: 𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝐿𝐿) = 𝑦𝑦𝑖𝑖

‖𝑤𝑤‖
(𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊 + 𝑤𝑤0) 

Aim? 

arg max
w,w0

�min
i
𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝐿𝐿)� = arg max

w,w0
�

1
‖𝑤𝑤‖

min
i

[𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊 + 𝑤𝑤0)]� 

If a set of points satisfies 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑤𝑤0 = 0 for a given 𝑤𝑤 and 𝑤𝑤0, then the same set of points will also satisfy 
𝛼𝛼𝒘𝒘𝑇𝑇𝒙𝒙 + 𝛼𝛼𝑤𝑤0 = 𝑤𝑤�𝑇𝑇𝑥𝑥 + 𝑤𝑤�0 = 0. 
→ The same boundary can be expressed in infinite ways. 
We choose 𝑤𝑤 and 𝑤𝑤0 such that 𝑦𝑦𝑖𝑖∗(𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊∗ + 𝑤𝑤0) = 1, so 𝑑𝑑(𝒙𝒙𝒊𝒊∗ , 𝐿𝐿) = 1

‖𝒘𝒘‖
 

All data points will satisfy 𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊 + 𝑤𝑤0) ≥ 1 
Aim? Maximize 1

‖𝒘𝒘‖
 or minimize ‖𝒘𝒘‖2 

Putting all together, 

arg min
w,w0

1
2
‖𝒘𝒘‖2  𝑠𝑠. 𝑡𝑡.𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊 + 𝑤𝑤0) ≥ 1 
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Lagrange multipliers 
Maximizing 𝑓𝑓 𝑠𝑠. 𝑡𝑡.𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑐𝑐 means to find the level curve of 𝑓𝑓 with greatest value intersecting the constraint 
curve. At this point, the two curves are tangent. 
Since ∇𝑓𝑓 is perpendicular to its level curve and ∇𝑔𝑔 is perpendicular to the constraint curve, we want points 
where ∇𝑓𝑓 = 𝜆𝜆∇𝑔𝑔. 
Lagrange function ℒ(𝑥𝑥,𝑦𝑦, 𝜆𝜆) = 𝑓𝑓(𝑥𝑥,𝑦𝑦) − 𝜆𝜆𝜆𝜆(𝑥𝑥,𝑦𝑦) 
Solve ∇ℒ(𝑥𝑥,𝑦𝑦, 𝜆𝜆) = 0 to find critical points which are candidates to be the max/min 
 
Lagrange multipliers with multiple constraints 
In general, if we want to minimize 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 0 𝑠𝑠. 𝑡𝑡.𝑔𝑔𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 0 for 𝑖𝑖 = 1, … ,𝑀𝑀, we introduce 
ℒ(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝜆𝜆1, … , 𝜆𝜆𝑀𝑀) = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) − ∑𝜆𝜆𝑘𝑘𝑔𝑔𝑘𝑘(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛), and solve 

∇ℒ(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , 𝜆𝜆1, … , 𝜆𝜆𝑀𝑀) = 0 ⇔ �∇𝑓𝑓
(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) −�𝜆𝜆𝑘𝑘∇𝑔𝑔𝑘𝑘(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 0

𝑔𝑔1(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ⋯ = 𝑔𝑔𝑀𝑀(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 0
 

 
 
Using Lagrange multipliers to solve arg min

w,w0

1
2
‖𝒘𝒘‖2  𝑠𝑠. 𝑡𝑡.𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊 + 𝑤𝑤0) ≥ 1 

Lagrange function ℒ(𝒘𝒘,𝑤𝑤0,𝜶𝜶) = 1
2
‖𝒘𝒘‖2 − ∑𝛼𝛼𝑖𝑖{𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇Φ(𝒙𝒙𝒊𝒊) + 𝑤𝑤0) − 1} where 𝜶𝜶 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)𝑇𝑇 

∇𝑤𝑤,𝑤𝑤0𝑓𝑓 = 𝛼𝛼∇𝒘𝒘,𝒘𝒘𝟎𝟎𝑔𝑔 ⇔ �
𝒘𝒘 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖Φ(𝒙𝒙𝒊𝒊)

0 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
 

Dual representation: ‖𝒘𝒘‖2 = ∑ _𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖Φ(𝒙𝒙𝒊𝒊)∑𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗Φ(𝒙𝒙𝒋𝒋) = ∑∑𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗Φ(𝒙𝒙𝒊𝒊)TΦ�𝒙𝒙𝒋𝒋� 
For the second term: ∑𝛼𝛼𝑖𝑖{𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇Φ(𝒙𝒙𝒊𝒊) + 𝑤𝑤0) − 1} = ∑𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇Φ(𝒙𝒙𝒊𝒊) + ∑𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑤𝑤0 − ∑𝛼𝛼𝑖𝑖 and replace 𝒘𝒘. 
Finally, ℒ̃(𝜶𝜶) = ∑𝛼𝛼𝑖𝑖 −

1
2
∑∑𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗Φ(𝒙𝒙𝒊𝒊)TΦ�𝒙𝒙𝒋𝒋� 

 
Constrained optimization should satisfy Karush–Kuhn–Tucker conditions: 

1. 𝛼𝛼𝑖𝑖 ≥ 0 (𝛼𝛼𝑖𝑖 > 0 then 𝑥𝑥𝑖𝑖 is a support vector, 𝛼𝛼𝑖𝑖 = 0 then 𝑥𝑥𝑖𝑖 is outside the margin) 
2. 𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇Φ(𝒙𝒙𝒊𝒊) + 𝑤𝑤0) − 1 ≥ 0 
3. 𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇Φ(𝒙𝒙𝒊𝒊) + 𝑤𝑤0) − 1) = 0 

 
Optimal boundary: 

1. solve max
𝛼𝛼

∑𝛼𝛼𝑖𝑖 −
1
2
∑∑𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗Φ(𝒙𝒙𝒊𝒊)TΦ�𝒙𝒙𝒋𝒋�  𝑠𝑠. 𝑡𝑡.𝛼𝛼𝑖𝑖 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 ∑𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0 

2. Compute 𝒘𝒘� = ∑𝛼𝛼�𝑖𝑖𝑦𝑦𝑖𝑖Φ(𝒙𝒙𝒊𝒊) 
3. Compute 𝑤𝑤0 using 𝛼𝛼�𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘�

𝑇𝑇Φ(𝒙𝒙𝒊𝒊) + 𝑤𝑤0) − 1) = 0, if 𝑥𝑥𝑖𝑖 is a support vector 𝑦𝑦𝑖𝑖(𝒘𝒘�𝑇𝑇Φ(𝒙𝒙𝒊𝒊) + 𝑤𝑤0) − 1 =

0 ⇒ 𝑤𝑤0 = 𝑦𝑦𝑖𝑖 − 𝒘𝒘�𝑇𝑇Φ(𝒙𝒙𝒊𝒊). It’s better to average 𝑤𝑤0 = 1
|𝒮𝒮|
∑ 𝑦𝑦𝑖𝑖 − 𝒘𝒘�𝑇𝑇Φ(𝒙𝒙𝒊𝒊)𝑖𝑖∈𝒮𝒮  where 𝒮𝒮 = {𝑖𝑖,𝛼𝛼𝑖𝑖 > 0}. 

4. Using the expression obtained for 𝒘𝒘, a new point can be classified using 𝑦𝑦�(𝒙𝒙𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) = 𝒘𝒘�𝑇𝑇𝒙𝒙𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝑤𝑤0 =
∑𝛼𝛼�𝑖𝑖𝑦𝑦𝑖𝑖Φ(𝒙𝒙𝒊𝒊)

T Φ(𝒙𝒙𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) + 𝑤𝑤0 whether it’s positive (𝒙𝒙𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ∈ 𝒞𝒞1) or negative (𝒙𝒙𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ∈ 𝒞𝒞2). 
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CHAPTER 7: Kernels (Week 9) 
SVM limitations: real data won’t probably be linearly separable. 
Possible solution: transform the data. 
Sometimes, the decision boundary is not linear but it may become if the set is projected in higher 
dimension space. 
Idea: 

1. Define a transform 𝜙𝜙 from input space to feature space 𝑥𝑥 → 𝜙𝜙(𝑥𝑥) 
2. Solve a linear problem in the feature space 
3. This gives a non-linear classifier in the input space 

This will lead to calculate 𝜙𝜙(𝑥𝑥) for each sample which is not practical 
 
Kernel: a function that can be expressed as a dot product in some feature space 𝐾𝐾(𝒖𝒖,𝒗𝒗) = 𝜙𝜙(𝒖𝒖)𝑇𝑇𝜙𝜙(𝒗𝒗) 

Example: 𝐾𝐾(𝑢𝑢, 𝑣𝑣) = (𝑢𝑢𝑢𝑢 + 𝑐𝑐)2 = �𝑢𝑢2,√2𝑐𝑐𝑢𝑢, 𝑐𝑐�
𝑇𝑇
�𝑣𝑣2,√2𝑐𝑐𝑣𝑣, 𝑐𝑐� = 𝜙𝜙(𝑢𝑢)𝑇𝑇𝜙𝜙(𝑣𝑣) where 𝜙𝜙: 𝑥𝑥 → �𝑥𝑥2,√2𝑐𝑐𝑥𝑥, 𝑐𝑐� 

 
 
Given 𝐾𝐾, is there a 𝜙𝜙 implied by the kernel? 
If �𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗��

1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛
is a symmetric positive semi-defined matrix (𝑧𝑧𝑇𝑇𝐾𝐾𝐾𝐾 ≥ 0 for every non-zero vector 𝑧𝑧) then 

𝐾𝐾 is a kernel (no need to compute 𝜙𝜙) 
 
Back to dual objective problem: we solve max

𝛼𝛼
∑𝛼𝛼𝑖𝑖 −

1
2
∑∑𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) and use ∑𝛼𝛼�𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝑤𝑤0 

for prediction. 
 
Example of kernels: 

• 𝑑𝑑 − 𝑡𝑡ℎ degree polynomial: 𝐾𝐾(𝑢𝑢, 𝑣𝑣) = (1 + 𝑢𝑢. 𝑣𝑣)𝑑𝑑 
• Radial basis: 𝐾𝐾(𝑢𝑢, 𝑣𝑣) = exp(−𝛾𝛾‖𝑢𝑢 − 𝑣𝑣‖2) 
• Neural Network: 𝐾𝐾(𝑢𝑢, 𝑣𝑣) = tanh(𝜉𝜉1(𝑢𝑢. 𝑣𝑣) + 𝜉𝜉2) 

 
SVM multi-class classification: 

• 1 versus all: 𝑁𝑁 classifiers 
• 1 versus 1: 𝑁𝑁(𝑁𝑁 − 1)/2 classifiers 

 
 
CHAPTER 8: Relevant Machine Learning Topics – Part II (Week 9) 
A learning machine: given an input 𝑥𝑥 predicts the output 𝑦𝑦� = ±1 using weights 𝛼𝛼. 
The power of the model. Tradeoff between: 

• Powerful model: more complex but can overfit 
• Less powerful: not going to overfit but restricted in what I can model 

 
Some terms & definitions 
Probability of misclassification (test error): 𝑅𝑅(𝛼𝛼) = 𝔼𝔼 �1

2
�𝑦𝑦 − 𝑓𝑓(𝑥𝑥,𝛼𝛼)�� 

Fraction training set misclassified (training error): 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼) = 1
𝑁𝑁
∑ 1
2

[𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝛼𝛼)] 
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The Nasty Formula (aka VC dimension): to estimate the error of future data. 

Pr�𝑅𝑅(𝛼𝛼) ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼) + �1
𝑁𝑁
�ℎ �log

2𝑁𝑁
ℎ

+ 1� − log
𝜂𝜂
4
�� = 1 − 𝜂𝜂 

The VC dimension ℎ is the maximum number of points that can be arranged so that 𝑓𝑓 shatters them 
(classify points within the 2𝑁𝑁 possibilities without training error). 
We choose the model with minimum upper bound (high VC → more chance to overfit) 
 
 
CHAPTER 9: Decision Trees (Week 10) 
Motivation: 𝐾𝐾 − 𝑁𝑁𝑁𝑁 classifier is time consuming because for every testing point it should calculate the 
distance between this point and every labeled point. Can we improve it? 
→ Decision Trees: learning the simplest decision tree is an NP-complete problem, so we will use a greedy 
approach: empty tree → split on next best feature → recurse → get a compact tree 
 
Impurity functions 
Greedy strategy: we keep splitting data to minimize an impurity function. 

• Data 𝑆𝑆 = �(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖),𝑦𝑦𝑖𝑖 ∈ {1, … ,𝐾𝐾}� where 𝐾𝐾 is the number of classes 
• 𝑆𝑆𝑘𝑘 ⊆ 𝑆𝑆 where 𝑆𝑆𝑘𝑘 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖),𝑦𝑦𝑖𝑖 = 𝑘𝑘} so 𝑆𝑆 = 𝑆𝑆1 ∪ …∪ 𝑆𝑆𝐾𝐾 
• 𝑝𝑝𝑘𝑘 = |𝑆𝑆𝑘𝑘|

|𝑆𝑆|  

Gini impurity: 𝐺𝐺(𝑆𝑆) = ∑ 𝑝𝑝𝑘𝑘(1 − 𝑝𝑝𝑘𝑘)𝑘𝑘 . For 𝐾𝐾 = 2, 𝐺𝐺(𝑆𝑆) = 2𝑝𝑝(1 − 𝑝𝑝) 
Kullback-Lieber Divergence (or Relative Entropy) to compare two probability distributions: 

𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞) = � 𝑝𝑝𝑘𝑘 log
𝑝𝑝𝑘𝑘
𝑞𝑞𝑘𝑘

 

For 𝑞𝑞 = 𝑞𝑞𝑘𝑘 = 1
𝐾𝐾
, 𝐾𝐾𝐾𝐾 �𝑝𝑝|| 1

𝐾𝐾
� = ⋯ = ∑𝑝𝑝𝑘𝑘 log𝑝𝑝𝑘𝑘 + log𝐾𝐾. So we look for min

p
−∑𝑝𝑝𝑘𝑘 log𝑝𝑝𝑘𝑘 

Algo: 
→ Compute the impurity function for every attribute 
→ Split the set 𝑆𝑆 using the minimum impurity function attribute (greedy approach) 
→ Make a decision tree node containing that attribute 
→ Recurse on subsets with remaining 
When stopping?  All data points in the subset have the same input 
   There are no more features to consider for the split 
 
Regression Trees 
CART: Classification And Regression Trees. We have another impurity function: ℒ(𝑆𝑆) = 1

|𝑆𝑆|
∑ (𝑦𝑦 − 𝑦𝑦�𝑆𝑆)2(𝑥𝑥,𝑦𝑦)∈𝑆𝑆  

where 𝑦𝑦�𝑆𝑆 is the average 𝑦𝑦 in 𝑆𝑆. 
We can have overfitting problems if the size of the tree (number of nodes) is very high. 
How to fix? Find simple trees, fixed depth/early stopping, etc. 
 
Parametric vs. Non-Parametric Algorithms: 

• Parametric: has a constant number of parameters, independent of the number of samples 
• Non-Parametric: Scales as a function of the training samples (𝐾𝐾 − 𝑁𝑁𝑁𝑁) 
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What about decision trees?  
• Parametric: if the tree depth is fixed or limited by a maximum 
• Non-Parametric: if trained in full depth (𝑂𝑂(log2 𝑛𝑛)) 

 
 
CHAPTER10: Ensembles (Week 10) 
Goal: reducing variance without increasing bias. How? Averaging. 
Weak law of large numbers: 1

𝑚𝑚
∑ 𝑥𝑥𝑖𝑖(𝑥𝑥)𝑖𝑖 → 𝑥̅𝑥 as 𝑚𝑚 → ∞. 

Apply that to classifiers: 
1. 𝑚𝑚 datasets available 𝐷𝐷1, … ,𝐷𝐷𝑚𝑚 drawn from 𝑃𝑃𝑛𝑛 
2. Train a classifier on each dataset and the average: ℎ� = ∑ ℎ𝐷𝐷𝑖𝑖(𝑥𝑥)𝑖𝑖 → ℎ�(𝑥𝑥) 

The problem is that we can’t have 𝑚𝑚 → ∞ (to have an infinite number of datasets) 
 
Solutions: 
Bagging (Bootstrap aggregating) 
Take repeated bootstrap datasets from training set 𝐷𝐷: given a set 𝐷𝐷 of size 𝑁𝑁, draw 𝑁𝑁 sample with 
replacement. 
Algo: 

1. Create 𝑘𝑘 bootstrap samples 𝐷𝐷1, … ,𝐷𝐷𝑘𝑘 
2. Train a classifier on each 𝐷𝐷𝑖𝑖 
3. Classify new instance by majority vote or average 

 
+ easy to implement, reduce variance by keeping bias unchanged 
− computationally more expensive, correlated training sets 
 
Random Forest 
Random Forests differ from Bagging in only one way: select a random subset of features at each split in the 
learning process. 
Algo: 

1. Create 𝑘𝑘 bootstrap samples 𝐷𝐷1, … ,𝐷𝐷𝑘𝑘 
2. For each 𝐷𝐷𝑖𝑖, train a full decision tree with slight modifications: 

a. Before each split, randomly select 𝑘𝑘 < 𝑑𝑑 features without replacement. 
b. Consider only these features for the split (increases variance of trees) 

3. Classify new instance by majority vote or average 
 
Tips 

• Good choice for RF params: 𝑘𝑘 = √𝑑𝑑 and 𝑚𝑚 as large as possible. 
• Trees do not require preprocessing (different feature scales are ok)  
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PART II: Unsupervised Learning 
No targets or Labels: Clustering, Density Estimation, Dimensionality Reduction. 
Set of 𝑁𝑁 observations 𝒙𝒙𝒊𝒊 from a random d-vector 𝑋𝑋 with joint density 𝑃𝑃(𝑋𝑋) (vs. 𝑃𝑃(𝑌𝑌|𝑋𝑋) in supervised). 
Approaches: 

• Clustering: determine whether 𝑃𝑃(𝑋𝑋) can be represented by simpler densities representing distinct 
types or classes of observation (K-mean, DBSCAN, Hierarchical Clustering). 

• Dimensionality Reduction: determine whether variables can be considered as functions of a smaller 
set of latent variables (Principal component analysis, self-organizing maps, autoencoders, principal 
curves, multidimensional scaling). 

 
CHAPTER 1: Clustering (week 12) 
The task of grouping a set of objects in such a way that objects in the same group (a cluster) are more similar 
(in some sense) to each other than to those in other groups (clusters). 
Key Elements: Similarity Criteria, Number of Groups, Features 
 
K-means 
Formalization:  

• Dataset 𝒟𝒟 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁} where 𝑥𝑥𝑛𝑛 ∈ ℝ𝐷𝐷 
• Goal 1: partition the dataset into K clusters 
• D-dimensional vector 𝜇𝜇𝑘𝑘: a prototype associated to the k-th cluster. 
• Goal 2: assign points to clusters and minimize the sum of square distances of each point to its closest 

mean vector by introducing 𝑟𝑟𝑖𝑖𝑖𝑖 = 1 if 𝑥𝑥𝑖𝑖 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘. 

𝐽𝐽 = ��𝑟𝑟𝑖𝑖𝑖𝑖�|𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘|�2 = �𝐽𝐽𝑘𝑘 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇𝑘𝑘

= 2�𝑟𝑟𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘) = 0 ⇒ 𝜇𝜇𝑘𝑘 =
∑𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖
∑ 𝑟𝑟𝑖𝑖𝑖𝑖

 

Algorithm 
 Initialize 𝜇𝜇𝑘𝑘 
 Repeat 
  For each 𝑥𝑥𝑖𝑖: 

   𝑟𝑟𝑖𝑖𝑖𝑖 = �
1, 𝑖𝑖𝑖𝑖 𝑘𝑘 = argmin

j
�|𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘|�

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

  For each 𝜇𝜇𝑘𝑘: 
   𝜇𝜇𝑘𝑘 = ∑𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖

∑ 𝑟𝑟𝑖𝑖𝑖𝑖
 

 Until 𝜇𝜇𝑘𝑘 converges 
 
Hierarchical Clustering 
K-means requires to know K 
Results from K-means depend on the initialization 
Bottom-up Hierarchical Clustering 

1. Start with each point in its own  
2. Identify the two closest clusters. Merge. 
3. Repeat until all points are in a single cluster 
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Linkage: dissimilarity between two points/clusters (min, max, average) 
At the beginning, each point represents a class, so the dissimilarity between classes is the distance between 
two points. After that, we need to think about dissimilarities between sets. 
Linkages Types: complete (max), single (min), average, centroid. 
→ The challenge: choice of similarity/dissimilarity measure (e.g. 𝑑𝑑, 𝑑𝑑2) and the linkage. 
 
 
CHAPTER 2: Dimensionality Reduction (week 12) 
Principal Component Analysis (PCA) can be defined as the orthogonal projection of the data onto a lower 
Dimensional linear space. 
 
Minimum-error formulation 
Considering a complete orthonormal basis of vectors, i.e. {𝒖𝒖𝒊𝒊} where 𝑖𝑖 = 1, … ,𝐷𝐷 and 𝒖𝒖𝒊𝒊𝑻𝑻.𝒖𝒖𝒋𝒋 = 𝛿𝛿𝑖𝑖𝑖𝑖 
We can write 𝒙𝒙𝒏𝒏 = ∑𝛼𝛼𝑛𝑛𝑛𝑛𝑢𝑢𝑖𝑖 = ∑�𝒙𝒙𝒏𝒏𝑻𝑻.𝒖𝒖𝒊𝒊�𝒖𝒖𝒊𝒊 
Goal: approximate each data point using a representation involving a restricted number 𝑀𝑀 < 𝐷𝐷 of variables. 
So 𝒙𝒙�𝒏𝒏 = ∑ 𝑧𝑧𝑛𝑛𝑛𝑛𝒖𝒖𝒊𝒊𝑀𝑀

𝑖𝑖=1 + ∑ 𝑏𝑏𝑖𝑖𝒖𝒖𝒊𝒊𝐷𝐷
𝑖𝑖=𝑀𝑀+1 , where {𝑧𝑧𝑛𝑛𝑛𝑛} depend on the point and {𝑏𝑏𝑖𝑖} are the same for all data points. 

𝑧𝑧𝑛𝑛𝑛𝑛 = 𝒙𝒙𝒏𝒏𝑻𝑻.𝒖𝒖𝒊𝒊 and 𝑏𝑏𝑖𝑖 = 𝒙𝒙�𝑻𝑻.𝒖𝒖𝒊𝒊 are the optimum values. 
Loss: ℒ(𝛼𝛼) = 1

𝑁𝑁
∑‖𝒙𝒙𝒏𝒏 − 𝒙𝒙�𝒏𝒏‖2 = 1

𝑁𝑁
∑ ∑ �𝒙𝒙𝒏𝒏𝑻𝑻.𝒖𝒖𝒊𝒊 − 𝑥̅𝑥𝑇𝑇 .𝑢𝑢𝑖𝑖�

2𝐷𝐷
𝑖𝑖=𝑀𝑀+1

𝑁𝑁
𝑛𝑛=1 = ∑ 𝒖𝒖𝒊𝒊𝑻𝑻.𝑺𝑺.𝒖𝒖𝒊𝒊𝐷𝐷

𝑖𝑖=𝑀𝑀+1  where 𝑆𝑆 = 1
𝑁𝑁
∑(𝑥𝑥𝑛𝑛 − 𝑥̅𝑥)(𝑥𝑥𝑛𝑛 −

𝑥̅𝑥)𝑇𝑇: covariance matrix. 
 
Algo: 

1. Standardize data (mean to 0 and variance to 1) 
2. Get the covariance matrix 𝑆𝑆 
3. Compute eigenvectors and eigenvalues of 𝑆𝑆 
4. Decreasingly sort eigenvalues 
5. Compute new features 𝑋𝑋.𝜃𝜃 
6. Drop useless values 

 


