
Mokhles BOUZAIEN   EURECOM 

 1 08.03.20 

Deep Learning 
Pietro Michiardi 

 
 

Lecture 01: Deep Neural Networks 
 

I. Fully connected Nets 
Goal: approximate a function f ∗(x) from data with f(x, W). 
Structure of the model: input, hidden, output layers; depth, width; cost function. 
𝑋𝑋 ∈ ℝ𝑁𝑁×𝐷𝐷, 𝑌𝑌 ∈ ℝ𝑁𝑁×𝐶𝐶, 𝑊𝑊(𝑖𝑖) ∈ ℝ�ℎ(𝑖𝑖−1)�×�ℎ(𝑖𝑖)�. 
Cost Function: Deep Nets are non-linear ⇒ Loss functions are not convex. 
Entropy is a measure of uncertainty of a random variable. Given 𝑋𝑋 with 𝑝𝑝(𝑥𝑥) = Pr(𝑋𝑋 = 𝑥𝑥) we have: 

𝐻𝐻(𝑋𝑋) = −�𝑝𝑝(𝑥𝑥) log𝑝𝑝(𝑥𝑥) = −𝔼𝔼𝑋𝑋~𝑝𝑝(𝑥𝑥) log 𝑝𝑝(𝑥𝑥) = 𝔼𝔼𝑋𝑋~𝑝𝑝(𝑥𝑥)
1

log𝑝𝑝(𝑥𝑥) 

Kullback-Leibler divergence: divergence between two distributions: 

𝐾𝐾𝐾𝐾[𝑝𝑝(𝑥𝑥) ∥ 𝑞𝑞(𝑥𝑥)] = �𝑝𝑝(𝑥𝑥) log
𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥) = 𝔼𝔼𝑋𝑋~𝑝𝑝(𝑥𝑥) log

𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥) 

Cross-Entropy: 𝐻𝐻�𝑝𝑝(𝑥𝑥), 𝑞𝑞(𝑥𝑥)� = 𝔼𝔼𝑋𝑋~𝑝𝑝(𝑥𝑥) log 1
𝑞𝑞(𝑥𝑥) 

Maximum Likelihood and Cross-Entropy: 𝑊𝑊𝑀𝑀𝑀𝑀 = arg max
W

𝑞𝑞(𝑋𝑋|𝑊𝑊) = arg min
W

𝐻𝐻�𝑝𝑝(𝑥𝑥), 𝑞𝑞(𝑥𝑥|𝑊𝑊)� 

Output Units: 
• Linear Units: 𝑦𝑦� = 𝑓𝑓(𝑙𝑙−1)(ℎ)𝑇𝑇𝑊𝑊𝑙𝑙 
• Sigmoid Units: 𝑦𝑦� = 𝜎𝜎�𝑓𝑓(𝑙𝑙−1)(ℎ)𝑇𝑇𝑊𝑊𝑙𝑙� used to squash the output in [0,1] 
• Softmax Units: 𝑦𝑦�𝑖𝑖 = softmax�𝑓𝑓(𝑙𝑙−1)(ℎ)𝑇𝑇𝑊𝑊𝑙𝑙� = exp 𝑧𝑧𝑖𝑖

∑exp 𝑧𝑧𝑖𝑖
 used in multi-class classification 

Hidden Units: we apply an element-wise non-linear function to the layer input. 
ReLu: 𝑔𝑔(𝑧𝑧) = max(0, 𝑧𝑧) 
Extension of ReLu: 𝑔𝑔(𝑧𝑧,𝛼𝛼) = max(0, 𝑧𝑧) + 𝛼𝛼min(0, 𝑧𝑧) 
Regularization: modification of algo to reduce test error but not train error (to prevent overfitting) 

Norm: measure of the “size” of vector: ‖𝑥𝑥‖𝑝𝑝 = (∑|𝑥𝑥𝑖𝑖|𝑝𝑝)
1
𝑝𝑝 

We usually use squared L2 norm instead of L2 (easier to derive): 𝜕𝜕‖𝑥𝑥‖2
2

𝜕𝜕𝑥𝑥1
= 𝜕𝜕

𝜕𝜕𝑥𝑥1
(𝑥𝑥12 + 𝑥𝑥22) = 2𝑥𝑥1. 

Regularized loss: ℒ̃(𝑊𝑊;𝑋𝑋,𝑦𝑦) = ℒ(𝑊𝑊;𝑋𝑋,𝑦𝑦) + 𝛼𝛼Ω(𝑊𝑊) = ℒ(𝑊𝑊;𝑋𝑋,𝑦𝑦) + 𝛼𝛼
2

WT𝑊𝑊 

So ∇Wℒ̃(𝑊𝑊;𝑋𝑋,𝑦𝑦) = ∇𝑊𝑊ℒ(𝑊𝑊;𝑋𝑋,𝑦𝑦) + 𝛼𝛼𝑊𝑊. 
Example: SGD with regularized updates: 𝑊𝑊 ← (1 − 𝜆𝜆𝛼𝛼)𝑊𝑊 − 𝜆𝜆∇𝑊𝑊ℒ(𝑊𝑊;𝑋𝑋,𝑦𝑦) 
Regularization by Noise Injection (in input samples, in weights, in labels). 
Regularization by Early Stopping. 
Regularization by Dropout: cancel some units: 𝑓𝑓(𝑙𝑙)(ℎ) = 𝑔𝑔 ��ℎ𝑇𝑇𝑊𝑊(𝑙𝑙)�⨀𝑚𝑚(𝑙𝑙)� where 𝑚𝑚 is the dropout mask. 

Regularization by DropConnect: cancel some connections: 𝑓𝑓(𝑙𝑙)(ℎ) = 𝑔𝑔 �ℎ𝑇𝑇�𝑊𝑊(𝑙𝑙)⨀𝑀𝑀(𝑙𝑙)�� 

 
II. Loss Landscapes 

The ability to train depend on the initialization, the depth (use skip connection and more units per layer). 
Hessian is positive semi-defined → convex or semi-convex 
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III. Stochastic Optimization 
Challenges: differentiability, non-convex surfaces, saddle points (gradient is zero), exploding/vanishing 
gradient (if 𝜆𝜆𝑖𝑖 are not around 1 in 𝑊𝑊 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔(𝜆𝜆)𝑉𝑉−1) 
 
Basic algos 

• Gradient Descent: all samples 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 − 𝜆𝜆𝑡𝑡∇𝒥𝒥(𝑊𝑊𝑡𝑡 ,𝑋𝑋,𝑦𝑦) 
• Stochastic Gradient Descent: one sample 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 − 𝜆𝜆𝑡𝑡∇𝒥𝒥(𝑊𝑊𝑡𝑡 , 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) 
• Mini-batch Stochastic Gradient Descent: a random batch 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 − 𝜆𝜆𝑡𝑡

1
m
∑ ∇𝒥𝒥(𝑊𝑊𝑡𝑡 , 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖  

To guarantee convergence ∑ λt𝑖𝑖 = ∞ and ∑ λt2𝑖𝑖 < ∞. 
Momentum to store the direction and speed at which 𝑊𝑊 move: 𝑣𝑣𝑡𝑡+1 = 𝛼𝛼𝑣𝑣𝑡𝑡 + 𝜆𝜆𝑔𝑔𝑡𝑡 and 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 − 𝑣𝑣𝑡𝑡 
 
Adaptive algos 

• AdaGrad: learning rate adapted to the gradient 𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 + 𝑔𝑔𝑡𝑡⨀𝑔𝑔𝑡𝑡 and 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 −
𝜆𝜆

𝛿𝛿+√𝑟𝑟
⨀𝑔𝑔𝑡𝑡 

• RMSProp: exponentially weighted average 𝑟𝑟𝑡𝑡+1 = 𝜌𝜌𝑟𝑟𝑡𝑡 + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡⨀𝑔𝑔𝑡𝑡 and 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 −
𝜆𝜆

𝛿𝛿+√𝑟𝑟
⨀𝑔𝑔𝑡𝑡 

• Adam = RMSProp + Momentum 
 
Initialization 
Initialization can determine whether the algorithm converges or not and how quickly it does. 

• Random or Sample from Gaussian/Uniform distribution. 
• Xavier/Glorot Initialization: Gaussian with zero mean and 0.01 sd or var�𝑊𝑊(𝑙𝑙)� = 1

Fanin+Fanout
 

• He-Normal Initialization: var�𝑊𝑊(𝑙𝑙)� = 2
Fanin

 

 
IV. Normalization Methods 

Batch Normalization: stabilize input distribution for each layer by setting mean and variance of each 
activation to be zero and one. 

Formally, 𝜇𝜇𝐵𝐵
(𝑘𝑘) = 1

𝑚𝑚
∑ 𝑥𝑥𝑖𝑖

(𝑘𝑘)𝑚𝑚
𝑖𝑖=1  and 𝜎𝜎𝐵𝐵

(𝑘𝑘) = 1
𝑚𝑚
∑ �𝑥𝑥𝑖𝑖

(𝑘𝑘) − 𝜇𝜇𝐵𝐵
(𝑘𝑘)�

2
𝑚𝑚
𝑖𝑖=1  then 𝑥𝑥�𝑖𝑖

(𝑘𝑘) = 𝑥𝑥𝑖𝑖
(𝑘𝑘)−𝜇𝜇𝐵𝐵

(𝑘𝑘)

�𝜎𝜎𝐵𝐵
(𝑘𝑘)2+𝜖𝜖

 and 𝑦𝑦𝑖𝑖
(𝑘𝑘) = 𝛾𝛾𝑥𝑥�𝑖𝑖

(𝑘𝑘) + 𝛽𝛽 

→ Improve Lipschitzness of the function so large gradient direction are less risky. 
 

V. Model Compression 
Why? Models are over parametrized 𝑂𝑂(𝐺𝐺𝐺𝐺) 
Pruning: applying mask to weights(?) 
 
 

Lecture 02: Convolutional Neural Networks 
I. Introduction 

A convnet contains convolutional filters (kernel), auxiliary layers to improve efficiency, feed forward layers. 
Kernel size: 

• How many filter outputs are influenced by a single input dimension. 
• How many receptive units influence a single filter output. 

 
II. Convolutions 

Notation: input layer → convolution layer (affine transform) → detector layer (nonlinearity) → pooling layer 
Input: 𝐾𝐾; kernel of size 𝑘𝑘 × 𝑘𝑘: 𝐾𝐾; output: 𝑂𝑂 
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Cross-correlation: 𝑂𝑂(𝑉𝑉, 𝑗𝑗) = (𝐾𝐾 ∗ 𝑊𝑊)(𝑉𝑉, 𝑗𝑗) = ∑ ∑ 𝐾𝐾(𝑉𝑉 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛)𝑊𝑊(𝑚𝑚,𝑛𝑛)𝑛𝑛𝑚𝑚  
 
Strides: skip over some positions of the kernel to reduce computational cost. 
Padding: pad the edges with extra fake pixels to produce an output with same size. 
Channels: more than 2 dimensions → define a kernel per channel 
 
Sizing Convolutional Filter 
→ Input size: ℎ𝑀𝑀 × 𝑤𝑤𝑀𝑀 × 𝑉𝑉𝑀𝑀 
→ Filter params: 

• Number of kernels: 𝐾𝐾 
• Kernel size: ℎ𝐾𝐾 × 𝑤𝑤𝐾𝐾 
• Stride: 𝑠𝑠 
• Padding: 𝑝𝑝 

→ Output size: �ℎ𝑂𝑂 = ℎ𝐿𝐿−ℎ𝐾𝐾+2𝑝𝑝
𝑠𝑠

+ 1� × �𝑤𝑤𝑂𝑂 = 𝑤𝑤𝐿𝐿−𝑤𝑤𝐾𝐾+2𝑝𝑝
𝑠𝑠

+ 1� × (𝑉𝑉𝑂𝑂 = 𝐾𝐾) 

→ Total params: weights = (ℎ𝐾𝐾 × 𝑤𝑤𝐾𝐾 × 𝑉𝑉𝑀𝑀) × 𝐾𝐾 and biases = 𝐾𝐾. 
 
Effective Implementation 

1. Concatenate patches to form a single matrix 𝑃𝑃 

2. Flatten the convolutional kernel to get a row vector �1 2
3 4� →

(1 2 3 4) 

3. Perform a row-vector, matrix multiplication (get a row-vector with the same number of cols as 𝑃𝑃) 
4. Reshape the results (ℎ𝑂𝑂,𝑤𝑤𝑂𝑂,𝑉𝑉𝑂𝑂). 

 
Pooling Layer 
Reduce the size of feature maps to decrease the computational power required to train the network. 
Approximately invariant to translations and rotations. 
Similar to convolutional filters, but nothing to learn here. 

• Max Pooling Layer: keeps only the activation with the max value. 
• Average Pooling Layer: averages the activations values within the filter mask. 

Sizing Pooling Layers 
→ Input size: ℎ𝑀𝑀 × 𝑤𝑤𝑀𝑀 × 𝑉𝑉𝑀𝑀 
→ Pooling Layer params: 

• Kernel size: ℎ𝐾𝐾 × 𝑤𝑤𝐾𝐾 
• Stride: 𝑠𝑠 

→ Output size: �ℎ𝑂𝑂 = ℎ𝐿𝐿−ℎ𝐾𝐾
𝑠𝑠

+ 1� × �𝑤𝑤𝑂𝑂 = 𝑤𝑤𝐿𝐿−𝑤𝑤𝐾𝐾
𝑠𝑠

+ 1� × (𝑉𝑉𝑂𝑂 = 𝑉𝑉𝑀𝑀) 

→ Total params: weights = 0 and biases = 0. 
 
For the math: https://pdfs.semanticscholar.org/5d79/11c93ddcb34cac088d99bd0cae9124e5dcd1.pdf  
 

III. Popular Architectures 
Classic Blueprint: convolutions + activation (ReLU) + Maxpooling 2x2 + fully connected output + Softmax 
AlexNet: data augmentation (x2048) 
VGG-16: very deep convolutional net for large-scale image recognition (138M params) 
ResNet: skip layers when they are not needed (𝑊𝑊 = 0) 
Pre-Trained Models: 

https://pdfs.semanticscholar.org/5d79/11c93ddcb34cac088d99bd0cae9124e5dcd1.pdf
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 Training a model on ImageNet database takes weeks. 
 → Transfer learning: use information from previously trained model 
 → Fine tuning: retrain (some) params of the network 
 

IV. Advanced Topics 
Localization: predict the coordinates of a bounding box (𝑥𝑥,𝑦𝑦,𝑤𝑤, ℎ). 
Evaluation metric: intersection over Union IoU = Area of Overlap

Area of Union
 (ground-true and predicted bounding boxes) 

 
Object Detection 
Challenges: unknown number of objects; detection and classification tasks 
Two-stage methods (region of interest then classification): slide windows (of different sizes) over the image 
and identify object using classification architectures (brute force method). 
One-stage methods: detect and classify at the same time. E.g. YOLO: pre-trained on ImageNet and the loss 
is a weighted sum of classification, localization and confidence losses. 
 
Segmentation 
Semantic Segmentation: identify the object category of each pixel (cat vs. background) 
Instance Segmentation: identify the object instance of each pixel (cat1 vs cat2) 
 
(see examples) 
 
 

Lecture 3: Sequence Modeling 
I. Introduction 

Sequential data (≠ i.i.d. data): successive points that are strongly correlated 
Sequence Learning: ML algos used for sequential data: 

• Time-series Prediction: use past values to predict future values (stock market, weather) 
• Sequence Labeling: assign label for each member of a sequence (speech & handwriting recognition) 

 
Methodologies: 

• Auto-regressive models: predict the next term from a fixed number of previous terms. 
• Feed-forward NN: generalize the previous model by using more layers and non-linear activations. 

 
Sequence Labeling 
This is a supervised learning task: use pairs (𝑥𝑥, 𝑡𝑡) ∈ ℝ𝑚𝑚 × 𝐾𝐾 of input sequence and target label (𝑚𝑚 is fixed 
and L is the alphabet), to train an algo. Apply standard ML algos only at the level of sequences, not points. 
 
Example: online handwritten recognition (the input is coordinates of the pen so 𝑚𝑚 = 2) 
The label 𝐾𝐾: the Latin alphabet, and extra labels for punctuation. 
Error measure: edit distance between the output of the classifier and the target sequence (e.g. Levenshtein 
distance: minimum series of operations (add, replace, delete) to transform a into b). 
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II. Recurrent Neural Networks 
Preliminaries 
An RNN is a model specialized for processing sequences of values 𝒙𝒙(1), … ,𝒙𝒙(𝜏𝜏) where 𝜏𝜏 is the sequence length 
(𝑡𝑡 ∈ {1, … , 𝜏𝜏} is time or position in the sequence). It operates on mini-batches (e.g. sentences) of different 𝜏𝜏’s. 
A dynamic system: 𝒔𝒔(𝑡𝑡) = 𝑓𝑓�𝒔𝒔(𝑡𝑡−1);𝜃𝜃� 
A dynamic system driven by external signal: 𝒔𝒔(𝑡𝑡) = 𝑓𝑓�𝒔𝒔(𝑡𝑡−1),𝒙𝒙(𝑡𝑡);𝜃𝜃� 
 
RNN Formulation 
General definition: input 𝒙𝒙(𝑡𝑡), hidden state 𝒉𝒉(𝑡𝑡), output 𝒐𝒐(𝑡𝑡), target 𝒚𝒚(𝑡𝑡), 
loss ℒ�𝒐𝒐(𝑡𝑡),𝒚𝒚(𝑡𝑡)� 
Parameters: input weights, hidden weights, and output weights (𝑼𝑼𝑖𝑖,𝑗𝑗, 𝑾𝑾𝑖𝑖,𝑗𝑗 
and 𝑽𝑽𝑖𝑖,𝑗𝑗 connecting unit 𝑉𝑉 to 𝑗𝑗) 

ℎ(𝑡𝑡) = tanh�𝑈𝑈𝑥𝑥(𝑡𝑡) + 𝑊𝑊ℎ(𝑡𝑡) + 𝑏𝑏� 
𝑜𝑜(𝑡𝑡) = 𝑉𝑉ℎ(𝑡𝑡) + 𝑐𝑐  

𝑦𝑦�(𝑡𝑡) = softmax�𝑜𝑜(𝑡𝑡)� 
 

III. Training RNN 
Defining the loss: ℒ��𝒙𝒙(1), … ,𝒙𝒙(𝜏𝜏)�, �𝒚𝒚(1), … ,𝒚𝒚(𝜏𝜏)�� = ∑ ℒ(𝑡𝑡)

𝑡𝑡 = −∑ log𝑝𝑝�𝑦𝑦(𝑡𝑡)|�𝒙𝒙(1), … ,𝒙𝒙(𝜏𝜏)��𝑡𝑡  
Backpropagation through time 

Gradient w.r.t. the output: �∇𝑜𝑜(𝑡𝑡)ℒ�𝑖𝑖 = 𝜕𝜕ℒ

𝜕𝜕𝑜𝑜𝑖𝑖
(𝑡𝑡) = 𝜕𝜕ℒ

𝜕𝜕ℒ(𝑡𝑡)
𝜕𝜕ℒ(𝑡𝑡)

𝜕𝜕𝑜𝑜𝑖𝑖
(𝑡𝑡) = 𝑦𝑦�𝑖𝑖

(𝑡𝑡) − 1𝑖𝑖,𝑦𝑦(𝑡𝑡) ,∀𝑉𝑉, 𝑡𝑡 

Next, we work backpropagation starting from the end of the sequence: 
• At 𝑡𝑡 = 𝜏𝜏: ∇ℎ(𝜏𝜏)ℒ = 𝑉𝑉𝑇𝑇∇𝑜𝑜(𝑡𝑡)ℒ (chain rule) 

• For 𝑡𝑡 < 𝜏𝜏: ∇ℎ(𝑡𝑡)ℒ = 𝑊𝑊𝑇𝑇�∇ℎ(𝑡𝑡+1)ℒ�.𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔 �1 − �ℎ(𝑡𝑡+1)�
2
� + 𝑉𝑉𝑇𝑇∇𝑜𝑜(𝑡𝑡)ℒ (no math details) 

 
Gradient w.r.t. the weights: 

• ∇𝑐𝑐ℒ = ∑ �𝜕𝜕𝑜𝑜
(𝑡𝑡)

𝜕𝜕𝑐𝑐
�
𝑇𝑇
∇𝑜𝑜(𝑡𝑡)ℒ𝑡𝑡 = ∑ ∇𝑜𝑜(𝑡𝑡)ℒ𝑡𝑡  

• ∇𝑏𝑏ℒ = ∑ �𝜕𝜕ℎ
(𝑡𝑡)

𝜕𝜕𝑏𝑏(𝑡𝑡)�
𝑇𝑇
∇ℎ(𝑡𝑡)ℒ𝑡𝑡 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔 �1 − �ℎ(𝑡𝑡)�

2
� .∇ℎ(𝑡𝑡)ℒ𝑡𝑡  

• ∇𝑉𝑉ℒ = ∑ ∑ � 𝜕𝜕ℒ

𝜕𝜕𝑜𝑜𝑖𝑖
(𝑡𝑡)�

𝑇𝑇

∇𝑉𝑉𝑜𝑜𝑖𝑖
(𝑡𝑡)

𝑖𝑖𝑡𝑡 = ∑ �∇𝑜𝑜(𝑡𝑡)ℒ�.ℎ(𝑡𝑡)𝑇𝑇
𝑡𝑡  

• ∇𝑊𝑊ℒ = ∑ ∑ � 𝜕𝜕ℒ

𝜕𝜕ℎ𝑖𝑖
(𝑡𝑡)�

𝑇𝑇

∇𝑊𝑊ℎ𝑖𝑖
(𝑡𝑡)

𝑖𝑖𝑡𝑡 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔 �1 − �ℎ(𝑡𝑡)�
2
� . �∇ℎ(𝑡𝑡)ℒ�. ℎ(𝑡𝑡−1)𝑇𝑇

𝑡𝑡  

• ∇𝑈𝑈ℒ = ∑ ∑ � 𝜕𝜕ℒ

𝜕𝜕ℎ𝑖𝑖
(𝑡𝑡)�

𝑇𝑇

∇𝑈𝑈ℎ𝑖𝑖
(𝑡𝑡)

𝑖𝑖𝑡𝑡 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔 �1 − �ℎ(𝑡𝑡)�
2
� . �∇ℎ(𝑡𝑡)ℒ�. 𝑥𝑥(𝑡𝑡)𝑇𝑇

𝑡𝑡  

What is wrong? Exploding/Vanishing gradients. 
Gradient clipping: if ‖𝑔𝑔‖ > 𝑣𝑣 then 𝑔𝑔 ← 𝑔𝑔

‖𝑔𝑔‖
 

 
IV. Memory-based Architectures 

RNN struggle to remember the past, as gradients vanish → design a cell to remember the past. 
Long Short-Term Memory (LSTM): https://www.bioinf.jku.at/publications/older/2604.pdf 

https://www.bioinf.jku.at/publications/older/2604.pdf
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• The Forget Gate: 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� where 
[. , . ] means concatenation. → which information we 
want to delete from the cell state. 

• The Input Gate: 𝑉𝑉𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) which 
elements to update, and �̃�𝐶𝑡𝑡 = tanh(𝑊𝑊𝐶𝐶[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) 
which values to store. 

→ Cell State update: 𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨂𝐶𝐶𝑡𝑡−1 + 𝑉𝑉𝑡𝑡 ⨂ �̃�𝐶𝑡𝑡 
• The Cell Output: ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨂ tanh𝐶𝐶𝑡𝑡 =

𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)⨂ tanh𝐶𝐶𝑡𝑡 
 

V. Beyond Recurrent Neural Networks 
Problems with RNN: long-term dependency, vanishing gradients, computational cost. 
Problems with LSTM: still challenging to remember long sequence, computationally heavy. 
Both: not hardware-friendly, difficult to parallelize 
 
Temporal Convolutional Network 

• CNN with input sequence of any length 
• No leakage from the future 

 
Delated Convolutions 
Residual Connections 𝑜𝑜 = 𝑉𝑉𝑐𝑐𝑡𝑡𝑉𝑉𝑣𝑣𝑉𝑉𝑡𝑡𝑉𝑉𝑜𝑜𝑛𝑛�𝑥𝑥 + 𝑓𝑓(𝑥𝑥)� to allow layers to learn about modifications. 
 
Why TCN? Conv are parallel (no sequential), stable gradients, partial results are not stored. 
Why not TCN? Not flexible for transfer learning usage since ≠ domains have ≠ requirements on history size. 
 
Transformer Networks 
Check videos about Transformer Networks! (https://youtu.be/iDulhoQ2pro) 

https://youtu.be/iDulhoQ2pro

