
Database Management System Implementation EURECOM

Mokhles BOUZAIEN 1 30.01.2020

Database Management System Implementation
Paolo Papotti

1. Introduction

A database is a large and integrated collection of data that models a real-world enterprise. It contains
entities and relationships. For example, a university database might contain information about the following:

• Entities: students, faculty, courses and classrooms.
• Relationships: students’ enrollment in courses and use of rooms for courses.

A database management system, or DBMS, is a software designed to store and manage databases:
provide efficient and shared access to persistent data.
A data model is a collection of high-level concepts for describing data hiding many low-level storage details.
Most DBMS today are based on the relational data model: relation, basically a table with columns and rows.
A schema is a description of data in terms of data model: every relation has a schema describing columns.

Example: University Database

• Entities: Students, Courses, Professors
• Relationships: Who takes what, Who teaches what
• Logical Schema:

Students (sid: string, name: string, gpa: float)
Courses (cid: string, cname: string, credits: int)
Enrolled (sid: string, cid: string, grade: string)

The data in a DBMS is described at three levels of abstraction, consisting of a schema at each of these levels:

• External (views): describes how users see the data. A view is like a relation but not stored explicitly.
• Conceptual (logical): describes all the relations stored in the database (unsorted, index on column).
• Physical: describes how previous relations are stored on secondary storage devices (disks, tapes).

Queries are questions that can be asked by a user in order to obtain information from a database. Those
questions are asked in a specialized language provided by the DBMS called Query Language.

• SQL: Structure Query Language
• DDL: Data Definition Language
• DML: Data Manipulation Language

Databases vs. File Systems: why databases are better?

1. Support of multiple views
• Different users viewing data in different ways
• A view is a virtual subset of the database (no need for multiple copies of data)

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 2 30.01.2020

2. Insulation between program and data
• The schema can be modified without a change in a program

3. Data abstraction
• A data model describing relationships without concern for physical details

Data independence
• Logical data independence: easily update views when there are changes in logical structure of data
• Physical data independence: hiding how data is being stored on storage

BDMS challenges:
1. Fast and declarative: use of indexes for faster scan
2. Limited memory: use of buffers
3. Concurrent transactions: transactions are a sequence of database actions (r/w) that guarantee:

a. Atomicity: an action either completes entirely or not at all
b. Consistency: an action results in a state that conforms all integrity constraints

4. Crash: if there is a crash during a transaction, no changes should persist

2. Database Design

Why? Agree on structure of database before deciding on a particular implementation.
Consider issues such as: what entities to model, how entities are related, what constraints exist on domains,
how to achieve good designs.
→ we discuss E/R diagrams.

Database design process:

1. Requirements analysis: what is stored, how it is used, who access the data.
2. Conceptual design: high-level description of db, balanced precision to be understood by technical and

non-technical people.
3. More:

a. Logical db design: mapping a conceptual schema
b. Physical DB design: choice of storage structure (B-trees, hashed files linked structures)
c. Security design.

The E/R model:
An entity is an object of the real world that is distinguishable from other objects and described by a set of
attributes. A collection of similar entities (having the same attributes) is called entity set.
A key is minimal set of attributes that uniquely identify an entity.
A relationship is an association between two entities (e.g. a subset of a cross-product). It can also have
attributes.
We can always use a new entity instead of a relationship to allow multiple instances of each entity
combination.

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 3 30.01.2020

Some rules:
The arrowhead is drawn at the “one” end of the
relationship type: 𝑋𝑋 → 𝑌𝑌 means that there exists a
function mapping from 𝑋𝑋 to 𝑌𝑌.
Entity sets are weak when their key (dashed underline)
comes from other classes to which they are related
called the owner.

3. SQL

→ Structured Query Language, or SQL, is a standard language for querying and manipulating data. SQL is
a declarative very high-level programming language.
→ Data Definition Language, or DDL, to define relational schemata (create/alter/delete tables). Compiling
DDL results in a Data Dictionary that stores metadata.
→ Data Manipulation Language, or DML, to insert/delete/modify tuples in tables.

Relation or Table – Attribute or Column – Tuple or Row
Atomic types: characters, numbers, money, datetime, etc. but not lists and sets.
Schema of table: name + attributes + types
Key: minimal subset of attributes that acts like a unique identifier for tuples.
SQL queries: selection (rows), projection (columns), join (tables), aggregation
Semantics of a join: cross product → selection/condition → projection
Semantics of group by: from/where → group by → having → select

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �𝑎𝑎𝑎𝑎𝑡𝑡1 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒1, … ,𝑎𝑎𝑎𝑎𝑡𝑡𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑛𝑛,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐾𝐾𝐾𝐾𝐾𝐾 (𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖),𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐾𝐾𝐾𝐾𝐾𝐾 �𝑎𝑎𝑡𝑡𝑡𝑡𝑗𝑗��
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 [𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙] 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝑣𝑣𝑣𝑣𝑙𝑙1, … , 𝑣𝑣𝑣𝑣𝑙𝑙𝑘𝑘)

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 4 30.01.2020

4. Data Storage
Computer memory issues:

• Storage capacity
• Random access speed
• Bandwidth capacity (sequential access)
• Cost
• Persistence

Memory Typical Access Time Typical Sizes
Registers 1𝑐𝑐𝑐𝑐𝑐𝑐 16 × 8𝐵𝐵
L1 4𝑐𝑐𝑐𝑐𝑐𝑐 (× 1) 16 × 32𝐵𝐵
L2 10𝑐𝑐𝑐𝑐𝑐𝑐 (× 2.5) 256𝐾𝐾𝐾𝐾
L3 60𝑐𝑐𝑐𝑐𝑐𝑐 (× 15) 8𝑀𝑀𝑀𝑀
Main Memory 60𝑛𝑛𝑛𝑛 (× 45) 16𝐺𝐺𝐺𝐺
Flash/Hard Disk 5𝑚𝑚𝑚𝑚 (× 3.7𝑀𝑀) 2𝑇𝑇𝑇𝑇

Data lives in secondary storage (as blocks) but must be in memory (as pages) to be used by DBMS.
Hard Disks
→ Slow random access
→ Durable: once on disk, data is safe.
→ Cheap
Time for a disk block access or disk I/O = seek time + rotational delay
+ transfer time

1. Seek time: access specific sector: 3.5𝑚𝑚𝑚𝑚 to 15𝑚𝑚𝑚𝑚
2. Rotational delay: access specific sector: avg. ½ revolution: 2𝑚𝑚𝑚𝑚

to 7𝑚𝑚𝑚𝑚 (depend on rpm)
3. Transfer time: block size / transfer rate

SSD
→ Robust, no moving parts
→ Non-volatile.
→ × 100 faster random access than disks and slower random read
→ More expensive than HDD.

Case study: calculate access time for 8𝐾𝐾𝐾𝐾 data block

Device
Rotational

Speed
Avg. Seek

Time
Transfer

Rate
Access Time

Seagate Cheetah 15𝐾𝐾 rpm 3.4𝑚𝑚𝑚𝑚 163𝑀𝑀𝑀𝑀/𝑠𝑠 3.4𝑚𝑚𝑚𝑚 + 2𝑚𝑚𝑚𝑚 + 0.05𝑚𝑚𝑚𝑚 = 5.45𝑚𝑚𝑚𝑚
Seagate Barracuda 7.5𝐾𝐾 rpm 9𝑚𝑚𝑚𝑚 103𝑀𝑀𝑀𝑀/𝑠𝑠 9𝑚𝑚𝑚𝑚 + 4𝑚𝑚𝑚𝑚 + 0.07𝑚𝑚𝑚𝑚 = 13.07𝑚𝑚𝑚𝑚

Seagate Pulsar (SSD) − − 370𝑀𝑀𝑀𝑀/𝑠𝑠 0𝑚𝑚𝑚𝑚 + 0𝑚𝑚𝑚𝑚 + 0.3𝑚𝑚𝑚𝑚 = 0.3𝑚𝑚𝑚𝑚

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 5 30.01.2020

Sequential read: read 1000 blocks of size 8𝐾𝐾𝐾𝐾
→ Random access

HDD = 1000 × 5.45𝑚𝑚𝑚𝑚 = 5.45𝑠𝑠
 SSD = 1000 × 0.3𝑚𝑚𝑚𝑚 = 0.3𝑠𝑠
→ Seq. read adjacent blocks

HHD = seek + rot. + 1000tr + 16 track-to-track = 3.4 + 2 + 50 + 3.2 = 58.6𝑚𝑚𝑚𝑚
SSD = (1000 × 8/128) × 0.3 = 18.9𝑚𝑚𝑚𝑚

Cost of writing is similar to reading unless we want to verify, add (full) rotation + block size / transfer rate

Random Access Memory or Main Memory
→ Fast: × 10 faster for sequential access and × 100,000 faster for random access
→ Volatile: data can be lost if crash occurs, power goes out, etc.
→ Expensive: for 70€, 16𝐺𝐺𝐺𝐺 of RAM vs. 2𝑇𝑇𝑇𝑇 of disk.

Optimization

• Disk scheduling algorithm: with multiple requests, choose the one that requires the smallest arm
movement (e.g. elevator algorithm).

• Track skewing: align sector 0 of each track to avoid rotational delay during longer sequential scan.
• Pre-fetch, double buffering: while processing data in buffer 1 by program, read data to be processed

next in buffer 2 so buffering time is 𝑅𝑅 + 𝑛𝑛𝑛𝑛 instead of 𝑛𝑛(𝑅𝑅 + 𝑃𝑃).
• RAID: data is copied on multiple disks

o RAID0: data is not duplicated by spread across 2 disks (disk failure → half of data lost) but
access data is faster.

o RAID1: data is copied on more than one disk (faster read)
o RAID5: spread data across multiple disks and store parity used to rebuild data if failure
o RAID10 (1+0): spread AND copy data across (at least 4) disks (fast & fault tolerant)

5. Buffers
Page: main memory representation of a block.
Disk vs. Main Memory:

• Main memory: fast but limited capacity, volatile.
• Disk: slow but large capacity, durable

How we effectively utilize both?
A buffer is a region of physical memory (main memory) used to store temporary data: intermediate data
between disk and main memory because reading/writing to disk is slow (need to cache data).
How? Disk pages are brought into buffer pool as needed and loaded into memory frames.
 Hight-level code requests (pins) pages from the buffer and releases (unpins) pages after use.
 A replacement policy decides which page to evict when full.
Read (from disk to buffer), Flush (evict from buffer & write to disk), Release (evict from buffer wo writing)

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 6 30.01.2020

BDMS vs. OS
The BDMS knows more about access patterns (can predict order of access & avoid random access).
The ability to pin and flush to disk.

The Buffer Manager: pins & unpins pages, handles & executes replacement policy (LRU, MRU, Clock)

• 𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝#): Request 𝑝𝑝# from the buffer manager, load it to memory, mark page as clean
Return a reference to the frame containing 𝑝𝑝#

• 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑝𝑝#,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑): Release #𝑝𝑝 making it a candidate for eviction

Must set dirty to 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 if page was modified

The effectiveness of a buffer manager depends on the replacement policy: how to choose an unpinned page
to flush? what to keep in memory?
Temporal Locality: small distance in time for same address. E.g. 𝑃𝑃1,𝑷𝑷𝑷𝑷,𝑃𝑃42,𝑷𝑷𝑷𝑷,𝑃𝑃2
Spatial Locality: small distance in time for similar address. I.e. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = |𝑖𝑖 − 𝑗𝑗| < 𝑡𝑡

Replacement Policies:

• Least Recently Used (LRU): evict the page whose latest unpin in longest ago.
o Need extra space, time and maintenance (ordered list).

• LRU-K: same as LRU but consider last K unpin calls.
o Given a reference, 𝑟𝑟4 = 𝑝𝑝2 means the fourth page we accessed is page2.
o 𝐵𝐵(𝑟𝑟,𝑝𝑝, 𝑘𝑘) = 𝑥𝑥 means that page 𝑝𝑝 was accessed at time 𝑇𝑇 − 𝑥𝑥 and 𝑘𝑘 − 1 other time in

𝑟𝑟[𝑇𝑇 − 𝑥𝑥,𝑇𝑇]. The next victim is 𝑣𝑣 = argmax
𝑝𝑝∈𝑃𝑃

𝐵𝐵(𝑟𝑟,𝑝𝑝, 𝑘𝑘)

o E.g. given 𝑟𝑟 = 𝑝𝑝7,𝑝𝑝8,𝑝𝑝2,𝑝𝑝4,𝑝𝑝8,𝑝𝑝7,𝑝𝑝2,𝑝𝑝5,𝑝𝑝6,𝑝𝑝7, 𝑝𝑝1, 𝐵𝐵(𝑝𝑝1,2) = ∞,𝐵𝐵(𝑝𝑝2,2) = 8, …
• Most Recently Used: evict the page that has been unpinned most recently.
• Random: pick a victim randomly.
• Clock: scan periodically and use a second-chance bit.

The five-minute rule
If a page is accessed more often, keep in memory; otherwise, remain on disk and read when needed.
Breakeven point: 𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶 ⇒ $𝐷𝐷

𝑋𝑋×𝐼𝐼
= $𝑀𝑀

𝑃𝑃
⇒ 𝑋𝑋 = $𝐷𝐷×𝑃𝑃

$𝑀𝑀×𝐼𝐼
= $2000×128

$15×64
≈ 5 𝑚𝑚𝑚𝑚.

6. Files, Pages and Records
Files
Page = main memory representation of a block
Disk space manager: takes care of the (de)allocation of pages within a database
File system model:

• A file is one or more pages
• A page contains one or more records
• A record corresponds to one tuple

Heap file: the most important type of files in a DB, stores records in no particular order
Record IDs (RID): used as record address, identifies the page containing the record

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 7 30.01.2020

Heap file interface: create/destroy hf, insert/delete/get record, initiate a sequential scan
Which page to pick to insert new record? Best Fit, First Fit, Next Fit

Pages
All data sit in pages, pages have IDs, a page is a collection of slots
for records

𝑅𝑅𝑅𝑅𝑅𝑅 =< 𝑃𝑃𝑃𝑃𝑃𝑃, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁° >
Page Header: contains # of records and bitmap for each slot (e.g.
0101101, 0 for empty & 1 for full)
Fixed-length components: for static or append-only data (logs)
Variable-length components: for variable-length

Records
Representing data with bytes (1 byte = 8 bits)

• Integer (short): 2 bytes: 35 = 00000000 00100011
• Real, floating point: n bits for mantissa, m for exponent, …
• Characters: e.g. UTF-8: 𝐴𝐴 = 1000001, 𝑎𝑎 = 1100001, 5 = 0110101
• Boolean: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1111 1111, 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆 = 0000 0000
• Date/Time: e.g. Integer: timestamp, characters: YYYYMMDD

Fixed Format Record Variable Format Record
For a record with 3 integer fields A, B and C
A at start address
B at start address + 4
C at start address + 20

2 | 5 I 64 | 4 S 4 FORD
Number of fields
Field code + Type (+ Length) + Value

Unspanned (records within one page/block) vs. Spanned (essential id record size > block size)

7. Layouts
Layouts

Row Stores Column Stores
+ Easy to implement
+ Good for transactional workload
+ Good for single row access

+ Good for single to few column access
+ Good for analytical workload (SELECT avg(c))

− Bad for analytics
− Bad for wide tables

− Bad when accessing multiple attributes
− Bad for transactional workload

Best layout? Depends on the query!

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 8 30.01.2020

PAX (Partition Attributes Across) Layout: horizontal partitioning (each chunk
in page). Number of horizontal partitions: 1 < 𝑖𝑖 < 𝑁𝑁 (tuples per partition ⌈𝑁𝑁/𝑖𝑖⌉).
Higher numbers of tuples per partition → Closer to a row layout (better update
and worse read)
Advantages:

• Improves locality for single attributes
• Data values are reorganized inside a page only
• Record reconstruction is cheap

! Not the best solution for analytics

Compression
Why? Less storage space, less bandwidth
Goal: decompress + read compressed < read uncompressed

Dictionary Compression: e.g. replace city by cityID and add a city dictionary
Advantages: string converted to integer; single row access still possible
Disadvantages: extra joins to dictionary

8. File Organization
Different file organizations:

1. Files of randomly ordered records (heap file)
2. Files sorted on some record fields
3. Files hashed on some record fields

Hash function maps a record 𝑟𝑟 onto a page of the file

• ℎ(𝑟𝑟) = bucket in which r belongs
• file is collection of buckets, ℎ does not determine placement in page

For example, ℎ can use lower 3 bits of the first INT field to compute bucket:
 ℎ(< 42, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, ”𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁” >) = 2 (42 = 101𝟎𝟎𝟎𝟎𝟎𝟎)
 ℎ(< 14, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, ”𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃” >) = 6 (14 = 1𝟏𝟏𝟏𝟏𝟏𝟏)
 ℎ(< 26, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, ”𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿” >) = 2 (26 = 11𝟎𝟎𝟎𝟎𝟎𝟎)
Fill page to 80% of its capacity to avoid overflow.

3 file organizations in 5 disciplines:

1. scan to read all records in a file
2. search with equality test
3. search with range selection
4. insert a given record in a file
5. delete a record

Cost Model
𝑏𝑏: # data pages in the file
𝑟𝑟: # records in a page

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 9 30.01.2020

𝐷𝐷: time needed to read/write in disk page (~5 − 15𝑚𝑚𝑚𝑚)
𝐶𝐶: CPU time to process a record (~0.1𝜇𝜇𝜇𝜇)
𝐻𝐻: CPU time to apply a function (e.g. hash function) (~0.1𝜇𝜇𝜇𝜇)

 Scan cost Search with = Range selection Insertion cost
Deletion cost (given

RID)

Heap file 𝑏𝑏(𝐷𝐷 + 𝑟𝑟𝑟𝑟)

On PK
1/2𝑏𝑏(𝐷𝐷 + 𝑟𝑟𝑟𝑟) 𝑏𝑏(𝐷𝐷 + 𝑟𝑟𝑟𝑟) 2𝐷𝐷 + 𝐶𝐶 𝐷𝐷 + 𝐶𝐶 + 𝐷𝐷
Not on PK
𝑏𝑏(𝐷𝐷 + 𝑟𝑟𝑟𝑟)

Sorted
file

𝑏𝑏(𝐷𝐷 + 𝑟𝑟𝑟𝑟) 𝐷𝐷 log2 𝑏𝑏 + 𝐶𝐶 log2 𝑟𝑟
𝐷𝐷 log2 𝑏𝑏 + 𝐶𝐶 log2 𝑟𝑟
+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛/𝑟𝑟)𝐷𝐷 + 𝑛𝑛𝑛𝑛

𝐷𝐷 log2 𝑏𝑏 + 𝐶𝐶 log2 𝑟𝑟

+
1
2 (𝐷𝐷 + 𝑟𝑟𝑟𝑟 + 𝐷𝐷) 𝐷𝐷 +

1
2 𝑏𝑏

(𝐷𝐷 + 𝑟𝑟𝑟𝑟 + 𝐷𝐷)

Hashed
file

(100/80)𝑏𝑏(𝐷𝐷 + 𝑟𝑟𝑟𝑟)

On PK
𝐻𝐻 + 𝐷𝐷 + 1/2 𝑟𝑟𝑟𝑟 (100/80)𝑏𝑏(𝐷𝐷 + 𝑟𝑟𝑟𝑟) 𝐻𝐻 + 𝐷𝐷 + 𝐶𝐶 + 𝐷𝐷 𝐷𝐷 + 𝐶𝐶 + 𝐷𝐷

Not on PK
𝐻𝐻 + 𝐷𝐷 + 𝑟𝑟𝑟𝑟

There is no single file organization that responds equally fast to all operations.
To search quickly along multiple attributes, we must keep multiple copies of the records each sorted by one
attribute. A lot of space needed!

9. Indexing
Index structures offer the advantages of sorted files and support insertions/deletions efficiently.
Instead of sorting the table by a specific field, we maintain an index of each field and search over them (e.g.
By_Year_Index, By_Author_Index, etc.)
Why?

• Search: quickly find all records which meet some conditions on the search key attributes
• Insert/Remove entries with low overhead

Clustered index: if the data file is sorted on index search key, the index is said clustered. For range
selection, query the index once for a record with X=lower, and then sequentially scan data file until field
X>upper.
Unclustered index: query the index for X=lower then scan index entries to pages scattered over file.

NB

• A data file can have at most one clustered index but any number of unclustered indexes.
• For exact search, no difference between clustered and unclustered.
• For range search, big difference between 1 random + R sequential I/O and R random I/O.

Sparse (vs. Dense) index: do not index all the attribute values. To search a record with A=k, locate the
largest index entry 𝑘𝑘’∗ such that k’ <= k, access the data page and sequentially scan (since clustered) to
find records.

Covering index: an index containing all needed attributes (SELECT and WHERE attributes). The query
can be answered using the index only.

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 10 30.01.2020

10. Trees
Binary search: SELECT ∗ FROM customers WHERE zipcode between 8880 and 8999
Assume file sorted on zipcode, use binary search to get lower range limit and then sequentially scan.
+ Need to read log2 𝑟𝑟 records during the search phase.
− Need to read as many pages

Index Sequential Access Method: maintain an index file with sorted entries < 𝑘𝑘𝑖𝑖 ,𝑝𝑝𝑖𝑖 > where 𝑘𝑘𝑖𝑖 is the
minimal A value on the data file page 𝑝𝑝𝑖𝑖 (𝑘𝑘𝑖𝑖 is a separator between content of page 𝑝𝑝𝑖𝑖−1 and 𝑝𝑝𝑖𝑖).
+ Access fewer pages comparing to binary search.
− Large data → index search can be slow.

Multi-level ISAM: a tree with one data level and many
index levels
Upper index levels remain static: not affected by
insertion/deletion.
The most efficient order-aware index structure so far.
𝑁𝑁: number of pages in the data file.
𝐹𝐹: fanout. 𝐹𝐹 = #𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1000
As we search down the tree, search space is repeatedly
reduced by a factor 𝐹𝐹: 𝑁𝑁 × 1/𝐹𝐹 × … × 1/𝐹𝐹
Index searching ends after 𝑠𝑠 steps when the search space
is reduced to 1.

𝑁𝑁 × �
1
𝐹𝐹
�
𝑠𝑠

= 1 → 𝑠𝑠 = log𝐹𝐹 𝑁𝑁

For 𝐹𝐹 ≫ 2, log𝐹𝐹 𝑁𝑁 ≪ log2 𝑁𝑁: more efficient than binary
search.
e.g. for 𝐹𝐹 = 1000, a tree of height 3 can index a file of
one billion (109) pages. 3 I/Os locate any data page.
B-Tree
A self-balancing tree data structure that maintains sorted data and allows searches, sequential access,
insertions, and deletions in logarithmic time.
1 node = 1 page

B+ Tree
Make leaves into linked lists for sequential scan (range queries).
𝑑𝑑: the order/degree of the tree (𝑑𝑑 ≤ 𝑛𝑛 ≤ 2𝑑𝑑 where 𝑛𝑛 is the number of entries for each node).

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 11 30.01.2020

• Non-leaf nodes contain pointers to other nodes
• Leaf-nodes contain records or pointer to the

previous/next leaf node

Searching a B+ Tree

1. Start at the root
2. Proceed down to the leaf
3. Sequential traversal (for range queries)

How large id 𝑑𝑑?
Example: key size = 4 bytes, pointer size = 8 bytes, block size = 4096 bytes.
We want each node to fit on a single block/page: 2𝑑𝑑 × 4 + (2𝑑𝑑 + 1) × 8 ≤ 4096 → 𝑑𝑑 ≤ 170

In practice
Typical order = 100, typical fill factor = 67%, average fanout = 133
Typical capacities:

• Height = 4: 1334 = 312,900,700 records
• Height = 3: 1333 = 2,352,637 records

Top levels (in buffer pool):
• Level 1: 1 page = 8 Kbytes
• Level 2: 133 pages = 1 Mbytes
• Level 3: 17,689 pages = 133 Mbytes

Simple cost model for search:
𝑓𝑓: fanout, 𝑁𝑁: total number of pages to index, 𝐹𝐹: fill factor
We need to have room to index 𝑁𝑁/𝐹𝐹 pages. With ℎ levels, we can index 𝑓𝑓ℎ pages.
So ℎ = �log𝑓𝑓

𝑁𝑁
𝐹𝐹
�

If we have 𝐵𝐵 available buffer pages, levels 𝐿𝐿𝐵𝐵 we can fit in the buffer satisfy: 𝐵𝐵 ≥ ∑ 𝑓𝑓𝑙𝑙𝐿𝐿𝐵𝐵−1
𝑙𝑙=0

The IO cost for exact search is �log𝑓𝑓
𝑁𝑁
𝐹𝐹
� − 𝐿𝐿𝐵𝐵 + 1

The IO cost for range search is �log𝑓𝑓
𝑁𝑁
𝐹𝐹
� − 𝐿𝐿𝐵𝐵 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑂𝑂𝑂𝑂𝑂𝑂)

(Read one page in each level except those in buffer, and read the record(s))

Inserting in a B+ Tree

1. Call search(𝑘𝑘) to find the page 𝑝𝑝 to hold the record
2. If 𝑝𝑝 has space (𝑛𝑛 < 2𝑑𝑑) then store 𝑘𝑘∗ in 𝑝𝑝

If no space in 𝑝𝑝
1. Split into 𝑝𝑝 and 𝑝𝑝′ (can happen recursively and lead to split of root which increases ℎ).
2. Distribute entries of 𝑝𝑝 and new entry 𝑘𝑘 across new 𝑝𝑝 and 𝑝𝑝′.

Deleting from a B+ Tree

1. Call search(𝑘𝑘) to find the page 𝑝𝑝 containing the record

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 12 30.01.2020

2. Delete the record
3. If 𝑛𝑛 ≤ 𝑑𝑑 − 1, then entries from a neighbor page migrate to 𝑝𝑝 and update separator for parent node

When the keys are of VARCHAR type, we reduce keys by using only prefixes because index keys (non-leaf)
are used only to direct traffic.

Multi-Dimensional Index
Index intersection: scans in separation, then compute intersection between the two rid lists.
R-Tree: a data structure used for indexing multi-dimensional information (e.g. geographical coordinates)

Hash Index

1. Compute ℎ(𝑘𝑘)
2. Access primary bucket page with ℎ(𝑘𝑘) ∈ [0,𝑁𝑁 − 1] (N disk pages)
3. Search/insert/delete record on page (or access overflow chain)

Hash function: ℎ(𝑘𝑘) = 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (for 𝑁𝑁 = 2𝑑𝑑, we consider last 𝑑𝑑 bits of 𝑘𝑘)
! Some primary buckets can be (almost) empty
Extendible Hashing: Use directory of pointers to buckets, double the number of pointers by doubling
directory, split only the bucket that overflow: much cheaper since directory is much smaller

11. Operations
External Merge & Sort
Merge two sorted lists of sizes 𝑀𝑀 and 𝑁𝑁 with 3 buffer pages.

Joins
A join is a subset of cross- product.

Nested Loop Join:

1. Loop over the tuples in 𝑅𝑅
2. For every tuple in 𝑅𝑅, loop over all tuples in 𝑆𝑆
3. Check join conditions
4. Write out

Cost: 𝑝𝑝(𝑅𝑅) + 𝑡𝑡(𝑅𝑅) × 𝑝𝑝(𝑆𝑆) + 𝑂𝑂𝑂𝑂𝑂𝑂 or 𝑝𝑝(𝑆𝑆) + 𝑡𝑡(𝑆𝑆) × 𝑝𝑝(𝑅𝑅) + 𝑂𝑂𝑂𝑂𝑂𝑂 depending on the outer relation.

Block Nested Loop Join:

1. Load in 𝐵𝐵 − 1 pages of 𝑅𝑅
2. For each (𝐵𝐵 − 1)-page segment of 𝑅𝑅, load each page of 𝑆𝑆
3. Check the join condition
4. Write out

Cost: 𝑝𝑝(𝑅𝑅) + 𝑝𝑝(𝑅𝑅)
𝐵𝐵−1

𝑝𝑝(𝑆𝑆) + 𝑂𝑂𝑂𝑂𝑂𝑂

By loading larger chunks of 𝑅𝑅, we minimize the number of full disk reads od 𝑆𝑆. BNLJ is faster.

Index Nested Loop Join: use index to avoid the full cross product

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 13 30.01.2020

Cost: 𝑝𝑝(𝑅𝑅) + 𝑡𝑡(𝑅𝑅) × 𝐿𝐿 + 𝑂𝑂𝑂𝑂𝑂𝑂 where 𝐿𝐿 is the cost of accessing all distinct values in the index (~3)

Sorted Merge Join:

1. Sort 𝑅𝑅, 𝑆𝑆 on 𝐴𝐴 using external merge sort
2. Scan sorted files and merge

! duplicate join keys
Scan cost: at best 𝑝𝑝(𝑅𝑅) + 𝑝𝑝(𝑆𝑆) reads and at worst 𝑝𝑝(𝑅𝑅) × 𝑝𝑝(𝑆𝑆) reads.
Cost: sort�𝑝𝑝(𝑅𝑅)� + sort�𝑝𝑝(𝑆𝑆)� + 𝑝𝑝(𝑅𝑅) + 𝑝𝑝(𝑆𝑆) + 𝑂𝑂𝑂𝑂𝑂𝑂 where sort(𝑁𝑁) = 2𝑁𝑁 ��log𝐵𝐵

𝑁𝑁
2(𝐵𝐵+1)

� + 1�

If already sorted, cost is linear; if max{𝑝𝑝(𝑅𝑅),𝑝𝑝(𝑆𝑆)} < 𝐵𝐵2, cost is 3� 𝑝𝑝(𝑅𝑅) + 𝑝𝑝(𝑆𝑆)� + 𝑂𝑂𝑂𝑂𝑂𝑂

Hash Join:

1. Partition phase: partition 𝑅𝑅 and 𝑆𝑆 into 𝐵𝐵 buckets using a hash function ℎ𝐵𝐵
2. Join tuples in buckets with same hash result

Cost is 2� 𝑝𝑝(𝑅𝑅) + 𝑝𝑝(𝑆𝑆)� + � 𝑝𝑝(𝑅𝑅) + 𝑝𝑝(𝑆𝑆)� + 𝑂𝑂𝑂𝑂𝑂𝑂 = 3� 𝑝𝑝(𝑅𝑅) + 𝑝𝑝(𝑆𝑆)� + 𝑂𝑂𝑂𝑂𝑂𝑂

Sort to Union:

• Sort both relations
• Scan sorted relations and merge them

Hash to Union:

• Partition 𝑅𝑅 and S using a hash function
• Build hash table for 𝑅𝑅 using different hash function
• Probe with tuples in 𝑆𝑆-partition and add tuples to table while ignoring duplicates

Aggregations (w/o grouping): usually require scanning all the table. If index search key includes
attributes in SELECT and WHERE, do index-only scan.
Aggregation (with grouping):

• If tree index on all attr. In SELECT, WHERE, GROUPBY: do index-only scan
• If GROUPBY attributes in search key: retrieve in order
• Else: get data entries and use sort/hash aggregate algo, compute aggregate for each group

12. Query Optimization
Recall:
Relation Schema = Relation Name + Attributes + Domains
Relation Instance = set of tuples conforming to the same schema

How does a SQL engine work?
SQL Query → Relational Algebra Plan → Optimized RA Plan → Execution

Operators of Relational Algebra:
→ Basic: Selection 𝜎𝜎𝑐𝑐(𝑅𝑅), Projection Π𝐴𝐴1,…,𝐴𝐴𝑛𝑛(𝑅𝑅), Cartesian Product 𝑅𝑅 × 𝑆𝑆, Union 𝑅𝑅 ∪ 𝑆𝑆, Difference 𝑅𝑅 − 𝑆𝑆.

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 14 30.01.2020

→ Derived:
• Intersection 𝑅𝑅 ∩ 𝑆𝑆 = 𝑅𝑅 − (𝑅𝑅 − 𝑆𝑆).
• Natural Join 𝑅𝑅 ⋈𝑐𝑐 𝑆𝑆 = Π𝐴𝐴∪𝐵𝐵�𝜎𝜎𝐶𝐶=𝐷𝐷(𝜌𝜌𝐶𝐶→D(𝑅𝑅) × 𝑆𝑆)�: a join on equality of shared attributes
• Theta Join 𝑅𝑅 ⋈𝜃𝜃 𝑆𝑆 = 𝜎𝜎𝜃𝜃(𝑅𝑅 × 𝑆𝑆): a join that involves a predicate (any condition 𝜃𝜃)
• Equi-Join 𝑅𝑅 ⋈𝐴𝐴=𝐵𝐵 𝑆𝑆 = 𝜎𝜎𝐴𝐴=𝐵𝐵(𝑅𝑅 × 𝑆𝑆): a join where 𝜃𝜃 is an equality (most common in practice)
• Semi-Join Π𝐴𝐴1,…,𝐴𝐴𝑛𝑛(𝑅𝑅 ⋉ 𝑆𝑆) where 𝐴𝐴𝑖𝑖 are the attributes of 𝑅𝑅.

→ Special: Renaming 𝜌𝜌𝐵𝐵1,…,𝐵𝐵𝑛𝑛(𝑅𝑅)

RA Plan Execution

• Join: use memory an I/O cost to pick the best algo (BNLJ, SMJ, HJ)
• Selection: use indexes
• Projection: identify distinct values with hashing or sorting

Optimization
→ Logical: find equivalent plans and choose the one minimizing # of tuples at each step
→ Physical: find algo with lowers I/O cost based on physical params (buffer size) & data size (histograms)

Logical: Always try (if possible) to push down Projections and Selections so they occur as soon as possible.
Physical

1. Estimate the cost for different indexes types
Example: range query for 𝑀𝑀 entries
→ Clustered

• Traverse ℎ = log𝑓𝑓 1.5𝑁𝑁
• Scan 1 random I/O + �𝑀𝑀−1

𝑃𝑃
� sequential I/O

→ Unclustered
• Traverse ℎ = log𝑓𝑓 1.5𝑁𝑁
• Scan ~𝑀𝑀 random I/O

2. Histograms & I/O Cost Estimation

A histogram is a set of value ranges (buckets) and the frequencies of each bucket occurrence.
How to choose the bucket?

• Full: bucket size = 1
• Uniform
• Equi-width: all buckets have the same size
• Equi-depth: all buckets have the same number of items (total frequency)

We must maintain histograms by periodically update them.

Catalogs contain #tuples & #pages for relations; #distinct key values & #pages for indexes; histograms
Enumerate alternative plans and estimate their costs without testing them. We use the catalog information
for that.

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 15 30.01.2020

Estimating query result cardinality
SELECT attr1, … , attrn
FROM R1, … , Rk
WHERE cond1 AND … AND condm

Result Cardinality = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(R1 × … × Rk) × ∏𝑅𝑅𝑅𝑅(𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑖𝑖) where 𝑅𝑅𝑅𝑅 is reduction factor.

13. Transactions
A transaction is a sequence of one ore more operations (read and write) which reflects a single real-world
transition (transfer money, purchase products, register for a class)

Motivations

1. Recovery & Durability: make sure that TXNs are either durably stored in full or not at all.
2. Concurrent execution: have the DBMS run several TXNs concurrently, to keep CPU going.

Properties

• Atomic: all or nothing (commits or aborts)
• Consistent: tables must always satisfy integrity constraints
• Isolated: should not be able to observe changes from other TXNs during the run
• Durable: the effect of a TXN must persist (committed data must be written to disk)

1. Atomicity and Durability via Logging

The log is a list of modifications that is duplexed and archived on stable disk.
Record information (diff) for every update → ordered list of actions: easy to undo/redo any action.
Why we need that? Partial results of transaction should be written to disk because not enough
memory/time to wait for the whole TXN. We need a log to undo these partial results.

Write-Ahead Logging: write log from memory to disk before writing data to disk.

2. Concurrency: parallelizing TXNs without creating conflicts
Interleave transactions to speed up processing (one uses CPU while other uses disk) but this may create
conflicts!
When an interleaving schedule (e.g. 𝑇𝑇1(𝐴𝐴) → 𝑇𝑇2(𝐴𝐴) → 𝑇𝑇2(𝐵𝐵) → 𝑇𝑇1(𝐵𝐵)) is different from any serial order (e.g.
𝑇𝑇1 then 𝑇𝑇2 or 𝑇𝑇2 then 𝑇𝑇1) we say that this schedule is not serializable.
→ So, a serializable schedule is a schedule that is equivalent (same effect) to some serial execution of the
transaction.
Conflict: two actions of different TXNs involve the same variable and at least one of them is write.

3. Conflict Serializability, Locking and Deadlock
Schedule S is conflict serializable if S is conflict equivalent (conflicting actions are in the same order) to
some serial schedule.

Database Management System Implementation EURECOM

Mokhles BOUZAIEN 16 30.01.2020

Theorem: schedule is conflict serializable if and only if its conflict graph is acyclic.

Locking: require each transaction to obtain a lock before accessing a data object to prevent concurrent
access.

Also See Deadlock!

