
Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 1 30.01.2020 

Database Management System Implementation 
Paolo Papotti 

 
 

1. Introduction 
 
A database is a large and integrated collection of data that models a real-world enterprise. It contains 
entities and relationships. For example, a university database might contain information about the following: 

• Entities: students, faculty, courses and classrooms. 
• Relationships: students’ enrollment in courses and use of rooms for courses. 

A database management system, or DBMS, is a software designed to store and manage databases: 
provide efficient and shared access to persistent data. 
A data model is a collection of high-level concepts for describing data hiding many low-level storage details. 
Most DBMS today are based on the relational data model: relation, basically a table with columns and rows. 
A schema is a description of data in terms of data model: every relation has a schema describing columns. 
 
 
Example: University Database 

• Entities: Students, Courses, Professors 
• Relationships: Who takes what, Who teaches what 
• Logical Schema: 

Students (sid: string, name: string, gpa: float) 
Courses (cid: string, cname: string, credits: int) 
Enrolled (sid: string, cid: string, grade: string) 

 
 
The data in a DBMS is described at three levels of abstraction, consisting of a schema at each of these levels: 

• External (views): describes how users see the data. A view is like a relation but not stored explicitly. 
• Conceptual (logical): describes all the relations stored in the database (unsorted, index on column). 
• Physical: describes how previous relations are stored on secondary storage devices (disks, tapes). 

 
Queries are questions that can be asked by a user in order to obtain information from a database. Those 
questions are asked in a specialized language provided by the DBMS called Query Language. 

• SQL: Structure Query Language 
• DDL: Data Definition Language 
• DML: Data Manipulation Language 

 
Databases vs. File Systems: why databases are better? 

1. Support of multiple views 
• Different users viewing data in different ways 
• A view is a virtual subset of  the database (no need for multiple copies of data) 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 2 30.01.2020 

2. Insulation between program and data 
• The schema can be modified without a change in a program 

3. Data abstraction 
• A data model describing relationships without concern for physical details 

Data independence 
• Logical data independence: easily update views when there are changes in logical structure of data 
• Physical data independence: hiding how data is being stored on storage 

BDMS challenges: 
1. Fast and declarative: use of indexes for faster scan 
2. Limited memory: use of buffers 
3. Concurrent transactions: transactions are a sequence of database actions (r/w) that guarantee: 

a. Atomicity: an action either completes entirely or not at all 
b. Consistency: an action results in a state that conforms all integrity constraints 

4. Crash: if there is a crash during a transaction, no changes should persist 
 

2. Database Design 
 
Why? Agree on structure of database before deciding on a particular implementation. 
Consider issues such as: what entities to model, how entities are related, what constraints exist on domains, 
how to achieve good designs. 
→ we discuss E/R diagrams. 
 
Database design process: 

1. Requirements analysis: what is stored, how it is used, who access the data. 
2. Conceptual design: high-level description of db, balanced precision to be understood by technical and 

non-technical people. 
3. More: 

a. Logical db design: mapping a conceptual schema 
b. Physical DB design: choice of storage structure (B-trees, hashed files linked structures) 
c. Security design. 

 
The E/R model: 
An entity is an object of the real world that is distinguishable from other objects and described by a set of 
attributes. A collection of similar entities (having the same attributes) is called entity set. 
A key is minimal set of attributes that uniquely identify an entity. 
A relationship is an association between two entities (e.g. a subset of a cross-product). It can also have 
attributes. 
We can always use a new entity instead of a relationship to allow multiple instances of each entity 
combination. 
 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 3 30.01.2020 

 
Some rules: 
The arrowhead is drawn at the “one” end of the 
relationship type: 𝑋𝑋 → 𝑌𝑌 means that there exists a 
function mapping from 𝑋𝑋 to 𝑌𝑌. 
Entity sets are weak when their key (dashed underline) 
comes from other classes to which they are related 
called the owner. 
 
 
 
 
 

3. SQL 
 
→ Structured Query Language, or SQL, is a standard language for querying and manipulating data. SQL is 
a declarative very high-level programming language. 
→ Data Definition Language, or DDL, to define relational schemata (create/alter/delete tables). Compiling 
DDL results in a Data Dictionary that stores metadata. 
→ Data Manipulation Language, or DML, to insert/delete/modify tuples in tables. 
 
Relation or Table – Attribute or Column – Tuple or Row 
Atomic types: characters, numbers, money, datetime, etc. but not lists and sets. 
Schema of table: name + attributes + types 
Key: minimal subset of attributes that acts like a unique identifier for tuples. 
SQL queries: selection (rows), projection (columns), join (tables), aggregation 
Semantics of a join: cross product → selection/condition → projection 
Semantics of group by: from/where → group by → having → select 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �𝑡𝑡𝑡𝑡𝑡𝑡1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1, … ,𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛,𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑌𝑌 𝐾𝐾𝐶𝐶𝑌𝑌 (𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖),𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝑃𝑃𝐹𝐹𝐹𝐹 𝐾𝐾𝐶𝐶𝑌𝑌 �𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗�� 
𝑃𝑃𝐹𝐹𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝐹𝐹𝐶𝐶𝐹𝐹 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 [𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 𝑡𝑡𝑎𝑎𝑙𝑙𝑡𝑡] 𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑙𝑙 (𝑣𝑣𝑡𝑡𝑡𝑡1, … , 𝑣𝑣𝑡𝑡𝑡𝑡𝑘𝑘) 

  



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 4 30.01.2020 

4. Data Storage 
Computer memory issues: 

• Storage capacity 
• Random access speed 
• Bandwidth capacity (sequential access) 
• Cost 
• Persistence 

 
Memory Typical Access Time Typical Sizes 
Registers 1𝑐𝑐𝑡𝑡𝑐𝑐 16 × 8𝑇𝑇 
L1 4𝑐𝑐𝑡𝑡𝑐𝑐 (× 1) 16 × 32𝑇𝑇 
L2 10𝑐𝑐𝑡𝑡𝑐𝑐 (× 2.5) 256𝐾𝐾𝑇𝑇 
L3 60𝑐𝑐𝑡𝑡𝑐𝑐 (× 15) 8𝑃𝑃𝑇𝑇 
Main Memory 60𝑡𝑡𝑙𝑙 (× 45) 16𝐹𝐹𝑇𝑇 
Flash/Hard Disk 5𝑡𝑡𝑙𝑙 (× 3.7𝑃𝑃) 2𝐶𝐶𝑇𝑇 

 
Data lives in secondary storage (as blocks) but must be in memory (as pages) to be used by DBMS. 
Hard Disks 
→ Slow random access 
→ Durable: once on disk, data is safe. 
→ Cheap 
Time for a disk block access or disk I/O = seek time + rotational delay 
+ transfer time 

1. Seek time: access specific sector: 3.5𝑡𝑡𝑙𝑙 to 15𝑡𝑡𝑙𝑙 
2. Rotational delay: access specific sector: avg. ½ revolution: 2𝑡𝑡𝑙𝑙 

to 7𝑡𝑡𝑙𝑙 (depend on rpm) 
3. Transfer time: block size / transfer rate 

 
SSD 
→ Robust, no moving parts 
→ Non-volatile. 
→ × 100 faster random access than disks and slower random read 
→ More expensive than HDD. 
 
 
Case study: calculate access time for 8𝐾𝐾𝑇𝑇 data block 
 

Device 
Rotational 

Speed 
Avg. Seek 

Time 
Transfer 

Rate 
Access Time 

Seagate Cheetah 15𝐾𝐾 rpm 3.4𝑡𝑡𝑙𝑙 163𝑃𝑃𝑇𝑇/𝑙𝑙 3.4𝑡𝑡𝑙𝑙 + 2𝑡𝑡𝑙𝑙 + 0.05𝑡𝑡𝑙𝑙 = 5.45𝑡𝑡𝑙𝑙 
Seagate Barracuda 7.5𝐾𝐾 rpm 9𝑡𝑡𝑙𝑙 103𝑃𝑃𝑇𝑇/𝑙𝑙 9𝑡𝑡𝑙𝑙 + 4𝑡𝑡𝑙𝑙 + 0.07𝑡𝑡𝑙𝑙 = 13.07𝑡𝑡𝑙𝑙 

Seagate Pulsar (SSD) − − 370𝑃𝑃𝑇𝑇/𝑙𝑙 0𝑡𝑡𝑙𝑙 + 0𝑡𝑡𝑙𝑙 + 0.3𝑡𝑡𝑙𝑙 = 0.3𝑡𝑡𝑙𝑙 
 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 5 30.01.2020 

Sequential read: read 1000 blocks of size 8𝐾𝐾𝑇𝑇 
→ Random access 

HDD = 1000 × 5.45𝑡𝑡𝑙𝑙 = 5.45𝑙𝑙 
   SSD = 1000 × 0.3𝑡𝑡𝑙𝑙 = 0.3𝑙𝑙 
→ Seq. read adjacent blocks 

HHD = seek + rot. + 1000tr + 16 track-to-track = 3.4 + 2 + 50 + 3.2 = 58.6𝑡𝑡𝑙𝑙 
SSD = (1000 × 8/128) × 0.3 = 18.9𝑡𝑡𝑙𝑙 

 
Cost of writing is similar to reading unless we want to verify, add (full) rotation + block size / transfer rate 
 
Random Access Memory or Main Memory 
→ Fast: × 10 faster for sequential access and × 100,000 faster for random access 
→ Volatile: data can be lost if crash occurs, power goes out, etc. 
→ Expensive: for 70€, 16𝐹𝐹𝑇𝑇 of RAM vs. 2𝐶𝐶𝑇𝑇 of disk. 
 
Optimization 

• Disk scheduling algorithm: with multiple requests, choose the one that requires the smallest arm 
movement (e.g. elevator algorithm). 

• Track skewing: align sector 0 of each track to avoid rotational delay during longer sequential scan. 
• Pre-fetch, double buffering: while processing data in buffer 1 by program, read data to be processed 

next in buffer 2 so buffering time is 𝐶𝐶 + 𝑡𝑡𝑃𝑃 instead of 𝑡𝑡(𝐶𝐶 + 𝑃𝑃). 
• RAID: data is copied on multiple disks 

o RAID0: data is not duplicated by spread across 2 disks (disk failure → half of data lost) but 
access data is faster. 

o RAID1: data is copied on more than one disk (faster read) 
o RAID5: spread data across multiple disks and store parity used to rebuild data if failure 
o RAID10 (1+0): spread AND copy data across (at least 4) disks (fast & fault tolerant) 

 

5. Buffers 
Page: main memory representation of a block. 
Disk vs. Main Memory: 

• Main memory: fast but limited capacity, volatile. 
• Disk: slow but large capacity, durable 

How we effectively utilize both? 
A buffer is a region of physical memory (main memory) used to store temporary data: intermediate data 
between disk and main memory because reading/writing to disk is slow (need to cache data). 
How? Disk pages are brought into buffer pool as needed and loaded into memory frames. 
 Hight-level code requests (pins) pages from the buffer and releases (unpins) pages after use. 
 A replacement policy decides which page to evict when full. 
Read (from disk to buffer), Flush (evict from buffer & write to disk), Release (evict from buffer wo writing) 
 
 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 6 30.01.2020 

BDMS vs. OS 
The BDMS knows more about access patterns (can predict order of access & avoid random access). 
The ability to pin and flush to disk. 
 
The Buffer Manager: pins & unpins pages, handles & executes replacement policy (LRU, MRU, Clock) 

• 𝑡𝑡𝑎𝑎𝑡𝑡(𝑡𝑡#):   Request 𝑡𝑡# from the buffer manager, load it to memory, mark page as clean 
Return a reference to the frame containing 𝑡𝑡# 

 
• 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡(𝑡𝑡#,𝑑𝑑𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡):  Release #𝑡𝑡 making it a candidate for eviction 

Must set dirty to 𝐶𝐶𝑎𝑎𝑎𝑎𝑡𝑡 if page was modified 
 
The effectiveness of a buffer manager depends on the replacement policy: how to choose an unpinned page 
to flush? what to keep in memory? 
Temporal Locality: small distance in time for same address. E.g. 𝑃𝑃1,𝑷𝑷𝑷𝑷,𝑃𝑃42,𝑷𝑷𝑷𝑷,𝑃𝑃2 
Spatial Locality: small distance in time for similar address. I.e. 𝑑𝑑𝑎𝑎𝑙𝑙𝑡𝑡�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = |𝑎𝑎 − 𝑗𝑗| < 𝑡𝑡 
 
Replacement Policies: 

• Least Recently Used (LRU): evict the page whose latest unpin in longest ago. 
o Need extra space, time and maintenance (ordered list). 

• LRU-K: same as LRU but consider last K unpin calls. 
o Given a reference, 𝑎𝑎4 = 𝑡𝑡2 means the fourth page we accessed is page2.  
o 𝑇𝑇(𝑎𝑎,𝑡𝑡, 𝑘𝑘) = 𝑥𝑥 means that page 𝑡𝑡 was accessed at time 𝐶𝐶 − 𝑥𝑥 and 𝑘𝑘 − 1 other time in 

𝑎𝑎[𝐶𝐶 − 𝑥𝑥,𝐶𝐶]. The next victim is 𝑣𝑣 = argmax
𝑝𝑝∈𝑃𝑃

𝑇𝑇(𝑎𝑎,𝑡𝑡, 𝑘𝑘) 

o E.g. given 𝑎𝑎 = 𝑡𝑡7,𝑡𝑡8,𝑡𝑡2,𝑡𝑡4,𝑡𝑡8,𝑡𝑡7,𝑡𝑡2,𝑡𝑡5,𝑡𝑡6,𝑡𝑡7, 𝑡𝑡1, 𝑇𝑇(𝑡𝑡1,2) = ∞,𝑇𝑇(𝑡𝑡2,2) = 8, … 
• Most Recently Used: evict the page that has been unpinned most recently. 
• Random: pick a victim randomly. 
• Clock: scan periodically and use a second-chance bit. 

 
The five-minute rule 
If a page is accessed more often, keep in memory; otherwise, remain on disk and read when needed. 
Breakeven point: 𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑃𝑃 ⇒ $𝐷𝐷

𝑋𝑋×𝐼𝐼
= $𝑀𝑀

𝑃𝑃
⇒ 𝑋𝑋 = $𝐷𝐷×𝑃𝑃

$𝑀𝑀×𝐼𝐼
= $2000×128

$15×64
≈ 5 𝑡𝑡𝑡𝑡. 

 

6. Files, Pages and Records 
Files 
Page = main memory representation of a block 
Disk space manager: takes care of the (de)allocation of pages within a database 
File system model: 

• A file is one or more pages 
• A page contains one or more records 
• A record corresponds to one tuple 

Heap file: the most important type of files in a DB, stores records in no particular order 
Record IDs (RID): used as record address, identifies the page containing the record 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 7 30.01.2020 

Heap file interface: create/destroy hf, insert/delete/get record, initiate a sequential scan 
Which page to pick to insert new record? Best Fit, First Fit, Next Fit 
 
Pages 
All data sit in pages, pages have IDs, a page is a collection of slots 
for records 

𝐶𝐶𝑃𝑃𝐶𝐶 =< 𝑃𝑃𝑃𝑃𝐶𝐶, 𝐼𝐼𝑡𝑡𝑆𝑆𝑡𝑡 𝐹𝐹° > 
Page Header: contains # of records and bitmap for each slot (e.g. 
0101101, 0 for empty & 1 for full) 
Fixed-length components: for static or append-only data (logs) 
Variable-length components: for variable-length 
 
Records 
Representing data with bytes (1 byte = 8 bits) 

• Integer (short): 2 bytes: 35 = 00000000 00100011 
• Real, floating point: n bits for mantissa, m for exponent, … 
• Characters: e.g. UTF-8: 𝐶𝐶 = 1000001, 𝑡𝑡 = 1100001, 5 = 0110101 
• Boolean: 𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶 = 1111 1111, 𝐹𝐹𝐶𝐶𝑇𝑇𝐼𝐼𝐶𝐶 = 0000 0000 
• Date/Time: e.g. Integer: timestamp, characters: YYYYMMDD 

 
 
 
 
Fixed Format Record Variable Format Record 
For a record with 3 integer fields A, B and C 
A at start address 
B at start address + 4 
C at start address + 20 

2 | 5 I 64 | 4 S 4 FORD 
Number of fields 
Field code + Type (+ Length) + Value 

 
Unspanned (records within one page/block) vs. Spanned (essential id record size > block size) 
 

7. Layouts 
Layouts 

Row Stores Column Stores 
+ Easy to implement 
+ Good for transactional workload 
+ Good for single row access 

+ Good for single to few column access 
+ Good for analytical workload (SELECT avg(c)) 

− Bad for analytics 
− Bad for wide tables  

− Bad when accessing multiple attributes 
− Bad for transactional workload 

 
Best layout? Depends on the query! 
 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 8 30.01.2020 

PAX (Partition Attributes Across) Layout: horizontal partitioning (each chunk 
in page). Number of horizontal partitions: 1 < 𝑎𝑎 < 𝐹𝐹 (tuples per partition ⌈𝐹𝐹/𝑎𝑎⌉). 
Higher numbers of tuples per partition → Closer to a row layout (better update 
and worse read) 
Advantages: 

• Improves locality for single attributes 
• Data values are reorganized inside a page only 
• Record reconstruction is cheap 

! Not the best solution for analytics 
 
Compression 
Why? Less storage space, less bandwidth 
Goal: decompress + read compressed < read uncompressed 
 
Dictionary Compression: e.g. replace city by cityID and add a city dictionary 
Advantages: string converted to integer; single row access still possible 
Disadvantages: extra joins to dictionary 
 

8. File Organization 
Different file organizations: 

1. Files of randomly ordered records (heap file) 
2. Files sorted on some record fields 
3. Files hashed on some record fields 

 
Hash function maps a record 𝑎𝑎 onto a page of the file  

• ℎ(𝑎𝑎) = bucket in which r belongs 
• file is collection of buckets, ℎ does not determine placement in page 

For example, ℎ can use lower 3 bits of the first INT field to compute bucket: 
 ℎ(< 42, 𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡, ”𝐹𝐹𝑎𝑎𝑐𝑐𝑡𝑡” >) = 2 (42 = 101𝟎𝟎𝟎𝟎𝟎𝟎) 
 ℎ(< 14, 𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡, ”𝑃𝑃𝑡𝑡𝑎𝑎𝑎𝑎𝑙𝑙” >) = 6 (14 = 1𝟎𝟎𝟎𝟎𝟎𝟎) 
 ℎ(< 26, 𝑓𝑓𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡, ”𝑇𝑇𝑡𝑡𝑆𝑆𝑡𝑡” >) = 2 (26 = 11𝟎𝟎𝟎𝟎𝟎𝟎) 
Fill page to 80% of its capacity to avoid overflow. 
 
3 file organizations in 5 disciplines: 

1. scan to read all records in a file 
2. search with equality test 
3. search with range selection 
4. insert a given record in a file 
5. delete a record 

 
Cost Model 
𝑡𝑡: # data pages in the file 
𝑎𝑎: # records in a page 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 9 30.01.2020 

𝐶𝐶: time needed to read/write in disk page (~5 − 15𝑡𝑡𝑙𝑙) 
𝐶𝐶: CPU time to process a record (~0.1𝜇𝜇𝑙𝑙) 
𝐻𝐻: CPU time to apply a function (e.g. hash function) (~0.1𝜇𝜇𝑙𝑙) 
 

 Scan cost Search with = Range selection Insertion cost 
Deletion cost (given 

RID) 

Heap file 𝑡𝑡(𝐶𝐶 + 𝑎𝑎𝐶𝐶) 

On PK 
1/2𝑡𝑡(𝐶𝐶 + 𝑎𝑎𝐶𝐶) 𝑡𝑡(𝐶𝐶 + 𝑎𝑎𝐶𝐶) 2𝐶𝐶 + 𝐶𝐶 𝐶𝐶 + 𝐶𝐶 + 𝐶𝐶 
Not on PK 
𝑡𝑡(𝐶𝐶 + 𝑎𝑎𝐶𝐶) 

Sorted 
file 

𝑡𝑡(𝐶𝐶 + 𝑎𝑎𝐶𝐶) 𝐶𝐶 log2 𝑡𝑡 + 𝐶𝐶 log2 𝑎𝑎 
𝐶𝐶 log2 𝑡𝑡 + 𝐶𝐶 log2 𝑎𝑎
+ 𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡(𝑡𝑡/𝑎𝑎)𝐶𝐶 + 𝑡𝑡𝐶𝐶 

𝐶𝐶 log2 𝑡𝑡 + 𝐶𝐶 log2 𝑎𝑎

+
1
2 (𝐶𝐶 + 𝑎𝑎𝐶𝐶 + 𝐶𝐶) 𝐶𝐶 +

1
2 𝑡𝑡

(𝐶𝐶 + 𝑎𝑎𝐶𝐶 + 𝐶𝐶) 

Hashed 
file 

(100/80)𝑡𝑡(𝐶𝐶 + 𝑎𝑎𝐶𝐶) 

On PK 
𝐻𝐻 + 𝐶𝐶 + 1/2 𝑎𝑎𝐶𝐶 (100/80)𝑡𝑡(𝐶𝐶 + 𝑎𝑎𝐶𝐶) 𝐻𝐻 + 𝐶𝐶 + 𝐶𝐶 + 𝐶𝐶 𝐶𝐶 + 𝐶𝐶 + 𝐶𝐶 

Not on PK 
𝐻𝐻 + 𝐶𝐶 + 𝑎𝑎𝐶𝐶 

 
There is no single file organization that responds equally fast to all operations. 
To search quickly along multiple attributes, we must keep multiple copies of the records each sorted by one 
attribute. A lot of space needed! 
 

9. Indexing 
Index structures offer the advantages of sorted files and support insertions/deletions efficiently. 
Instead of sorting the table by a specific field, we maintain an index of each field and search over them (e.g. 
By_Year_Index, By_Author_Index, etc.) 
Why? 

• Search: quickly find all records which meet some conditions on the search key attributes 
• Insert/Remove entries with low overhead 

 
Clustered index: if the data file is sorted on index search key, the index is said clustered. For range 
selection, query the index once for a record with X=lower, and then sequentially scan data file until field 
X>upper. 
Unclustered index: query the index for X=lower then scan index entries to pages scattered over file. 
 
NB 

• A data file can have at most one clustered index but any number of unclustered indexes. 
• For exact search, no difference between clustered and unclustered. 
• For range search, big difference between 1 random + R sequential I/O and R random I/O. 

 
Sparse (vs. Dense) index: do not index all the attribute values. To search a record with A=k, locate the 
largest index entry 𝑘𝑘’∗ such that k’ <= k, access the data page and sequentially scan (since clustered) to 
find records. 
 
Covering index: an index containing all needed attributes (SELECT and WHERE attributes). The query 
can be answered using the index only. 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 10 30.01.2020 

 

10. Trees 
Binary search: SELECT ∗  FROM customers WHERE zipcode between 8880 and 8999 
Assume file sorted on zipcode, use binary search to get lower range limit and then sequentially scan. 
+ Need to read log2 𝑎𝑎 records during the search phase. 
− Need to read as many pages 
 
Index Sequential Access Method: maintain an index file with sorted entries < 𝑘𝑘𝑖𝑖 ,𝑡𝑡𝑖𝑖 > where 𝑘𝑘𝑖𝑖 is the 
minimal A value on the data file page 𝑡𝑡𝑖𝑖 (𝑘𝑘𝑖𝑖 is a separator between content of page 𝑡𝑡𝑖𝑖−1 and 𝑡𝑡𝑖𝑖). 
+ Access fewer pages comparing to binary search. 
− Large data → index search can be slow. 
 
Multi-level ISAM: a tree with one data level and many 
index levels 
Upper index levels remain static: not affected by 
insertion/deletion. 
The most efficient order-aware index structure so far. 
𝐹𝐹: number of pages in the data file. 
𝐹𝐹: fanout. 𝐹𝐹 = #𝑐𝑐ℎ𝑎𝑎𝑡𝑡𝑑𝑑𝑎𝑎𝑡𝑡𝑡𝑡/𝑎𝑎𝑡𝑡𝑑𝑑𝑡𝑡𝑥𝑥 𝑡𝑡𝑆𝑆𝑑𝑑𝑡𝑡𝑙𝑙 = 1000 
As we search down the tree, search space is repeatedly 
reduced by a factor 𝐹𝐹: 𝐹𝐹 × 1/𝐹𝐹 × … × 1/𝐹𝐹 
Index searching ends after 𝑙𝑙 steps when the search space 
is reduced to 1. 

𝐹𝐹 × �
1
𝐹𝐹
�
𝑠𝑠

= 1 → 𝑙𝑙 = log𝐹𝐹 𝐹𝐹 

For 𝐹𝐹 ≫ 2, log𝐹𝐹 𝐹𝐹 ≪ log2 𝐹𝐹: more efficient than binary 
search. 
e.g. for 𝐹𝐹 = 1000, a tree of height 3 can index a file of 
one billion (109) pages. 3 I/Os locate any data page. 
B-Tree 
A self-balancing tree data structure that maintains sorted data and allows searches, sequential access, 
insertions, and deletions in logarithmic time. 
1 node = 1 page 
 
B+ Tree 
Make leaves into linked lists for sequential scan (range queries). 
𝑑𝑑: the order/degree of the tree (𝑑𝑑 ≤ 𝑡𝑡 ≤ 2𝑑𝑑 where 𝑡𝑡 is the number of entries for each node). 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 11 30.01.2020 

• Non-leaf nodes contain pointers to other nodes 
• Leaf-nodes contain records or pointer to the 

previous/next leaf node 
 
Searching a B+ Tree 

1. Start at the root 
2. Proceed down to the leaf 
3. Sequential traversal (for range queries) 

 
How large id 𝑑𝑑? 
Example: key size = 4 bytes, pointer size = 8 bytes, block size = 4096 bytes. 
We want each node to fit on a single block/page: 2𝑑𝑑 × 4 + (2𝑑𝑑 + 1) × 8 ≤ 4096 → 𝑑𝑑 ≤ 170 
 
In practice 
Typical order = 100, typical fill factor = 67%, average fanout = 133 
Typical capacities: 

• Height = 4: 1334 = 312,900,700 records 
• Height = 3: 1333 = 2,352,637 records 

Top levels (in buffer pool): 
• Level 1: 1 page = 8 Kbytes 
• Level 2: 133 pages = 1 Mbytes 
• Level 3: 17,689 pages = 133 Mbytes 

 
 
Simple cost model for search: 
𝑓𝑓: fanout, 𝐹𝐹: total number of pages to index, 𝐹𝐹: fill factor 
We need to have room to index 𝐹𝐹/𝐹𝐹 pages. With ℎ levels, we can index 𝑓𝑓ℎ pages. 
So ℎ = �log𝑓𝑓

𝑁𝑁
𝐹𝐹
� 

If we have 𝑇𝑇 available buffer pages, levels 𝑇𝑇𝐵𝐵 we can fit in the buffer satisfy: 𝑇𝑇 ≥ ∑ 𝑓𝑓𝑙𝑙𝐿𝐿𝐵𝐵−1
𝑙𝑙=0  

The IO cost for exact search is �log𝑓𝑓
𝑁𝑁
𝐹𝐹
� − 𝑇𝑇𝐵𝐵 + 1 

The IO cost for range search is �log𝑓𝑓
𝑁𝑁
𝐹𝐹
� − 𝑇𝑇𝐵𝐵 + 𝑐𝑐𝑆𝑆𝑙𝑙𝑡𝑡(𝐹𝐹𝑇𝑇𝐶𝐶) 

(Read one page in each level except those in buffer, and read the record(s)) 
 
Inserting in a B+ Tree 

1. Call search(𝑘𝑘) to find the page 𝑡𝑡 to hold the record 
2. If 𝑡𝑡 has space (𝑡𝑡 < 2𝑑𝑑) then store 𝑘𝑘∗ in 𝑡𝑡 

If no space in 𝑡𝑡 
1. Split into 𝑡𝑡 and 𝑡𝑡′ (can happen recursively and lead to split of root which increases ℎ). 
2. Distribute entries of 𝑡𝑡 and new entry 𝑘𝑘 across new 𝑡𝑡 and 𝑡𝑡′. 

 
Deleting from a B+ Tree 

1. Call search(𝑘𝑘) to find the page 𝑡𝑡 containing the record 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 12 30.01.2020 

2. Delete the record 
3. If 𝑡𝑡 ≤ 𝑑𝑑 − 1, then entries from a neighbor page migrate to 𝑡𝑡 and update separator for parent node 

 
When the keys are of VARCHAR type, we reduce keys by using only prefixes because index keys (non-leaf) 
are used only to direct traffic. 
 
Multi-Dimensional Index 
Index intersection: scans in separation, then compute intersection between the two rid lists. 
R-Tree: a data structure used for indexing multi-dimensional information (e.g. geographical coordinates) 
 
Hash Index 

1. Compute ℎ(𝑘𝑘) 
2. Access primary bucket page with ℎ(𝑘𝑘) ∈ [0,𝐹𝐹 − 1] (N disk pages) 
3. Search/insert/delete record on page (or access overflow chain) 

Hash function: ℎ(𝑘𝑘) = 𝑘𝑘 𝑡𝑡𝑆𝑆𝑑𝑑 𝐹𝐹 (for 𝐹𝐹 = 2𝑑𝑑, we consider last 𝑑𝑑 bits of 𝑘𝑘) 
! Some primary buckets can be (almost) empty 
Extendible Hashing: Use directory of pointers to buckets, double the number of pointers by doubling 
directory, split only the bucket that overflow: much cheaper since directory is much smaller 
 

11. Operations 
External Merge & Sort 
Merge two sorted lists of sizes 𝑃𝑃 and 𝐹𝐹 with 3 buffer pages. 
 
Joins 
A join is a subset of cross- product. 
 
Nested Loop Join: 

1. Loop over the tuples in 𝐶𝐶 
2. For every tuple in 𝐶𝐶, loop over all tuples in 𝐼𝐼 
3. Check join conditions 
4. Write out 

Cost: 𝑡𝑡(𝐶𝐶) + 𝑡𝑡(𝐶𝐶) × 𝑡𝑡(𝐼𝐼) + 𝐹𝐹𝑇𝑇𝐶𝐶 or 𝑡𝑡(𝐼𝐼) + 𝑡𝑡(𝐼𝐼) × 𝑡𝑡(𝐶𝐶) + 𝐹𝐹𝑇𝑇𝐶𝐶 depending on the outer relation. 
 
Block Nested Loop Join: 

1. Load in 𝑇𝑇 − 1 pages of 𝐶𝐶 
2. For each (𝑇𝑇 − 1)-page segment of 𝐶𝐶, load each page of 𝐼𝐼 
3. Check the join condition 
4. Write out 

Cost: 𝑡𝑡(𝐶𝐶) + 𝑝𝑝(𝑅𝑅)
𝐵𝐵−1

𝑡𝑡(𝐼𝐼) + 𝐹𝐹𝑇𝑇𝐶𝐶 

By loading larger chunks of 𝐶𝐶, we minimize the number of full disk reads od 𝐼𝐼. BNLJ is faster. 
 
Index Nested Loop Join: use index to avoid the full cross product 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 13 30.01.2020 

Cost: 𝑡𝑡(𝐶𝐶) + 𝑡𝑡(𝐶𝐶) × 𝑇𝑇 + 𝐹𝐹𝑇𝑇𝐶𝐶 where 𝑇𝑇 is the cost of accessing all distinct values in the index (~3) 
 
Sorted Merge Join: 

1. Sort 𝐶𝐶, 𝐼𝐼 on 𝐶𝐶 using external merge sort 
2. Scan sorted files and merge 

! duplicate join keys 
Scan cost: at best 𝑡𝑡(𝐶𝐶) + 𝑡𝑡(𝐼𝐼) reads and at worst 𝑡𝑡(𝐶𝐶) × 𝑡𝑡(𝐼𝐼) reads. 
Cost: sort�𝑡𝑡(𝐶𝐶)� + sort�𝑡𝑡(𝐼𝐼)� + 𝑡𝑡(𝐶𝐶) + 𝑡𝑡(𝐼𝐼) + 𝐹𝐹𝑇𝑇𝐶𝐶 where sort(𝐹𝐹) = 2𝐹𝐹 ��log𝐵𝐵

𝑁𝑁
2(𝐵𝐵+1)

� + 1� 

If already sorted, cost is linear; if max{𝑡𝑡(𝐶𝐶),𝑡𝑡(𝐼𝐼)} < 𝑇𝑇2, cost is 3� 𝑡𝑡(𝐶𝐶) + 𝑡𝑡(𝐼𝐼)� + 𝐹𝐹𝑇𝑇𝐶𝐶 
 
Hash Join: 

1. Partition phase: partition 𝐶𝐶 and 𝐼𝐼 into 𝑇𝑇 buckets using a hash function ℎ𝐵𝐵 
2. Join tuples in buckets with same hash result 

Cost is 2� 𝑡𝑡(𝐶𝐶) + 𝑡𝑡(𝐼𝐼)� + � 𝑡𝑡(𝐶𝐶) + 𝑡𝑡(𝐼𝐼)� + 𝐹𝐹𝑇𝑇𝐶𝐶 = 3� 𝑡𝑡(𝐶𝐶) + 𝑡𝑡(𝐼𝐼)� + 𝐹𝐹𝑇𝑇𝐶𝐶 
 
Sort to Union: 

• Sort both relations 
• Scan sorted relations and merge them 

 
Hash to Union: 

• Partition 𝐶𝐶 and S using a hash function 
• Build hash table for 𝐶𝐶 using different hash function 
• Probe with tuples in 𝐼𝐼-partition and add tuples to table while ignoring duplicates 

 
Aggregations (w/o grouping): usually require scanning all the table. If index search key includes 
attributes in SELECT and WHERE, do index-only scan. 
Aggregation (with grouping): 

• If tree index on all attr. In SELECT, WHERE, GROUPBY: do index-only scan 
• If GROUPBY attributes in search key: retrieve in order 
• Else: get data entries and use sort/hash aggregate algo, compute aggregate for each group 

 

12. Query Optimization 
Recall: 
Relation Schema = Relation Name + Attributes + Domains 
Relation Instance = set of tuples conforming to the same schema 
 
How does a SQL engine work? 
SQL Query → Relational Algebra Plan → Optimized RA Plan → Execution 
 
Operators of Relational Algebra: 
→ Basic: Selection 𝜎𝜎𝑐𝑐(𝐶𝐶), Projection Π𝐴𝐴1,…,𝐴𝐴𝑛𝑛(𝐶𝐶), Cartesian Product 𝐶𝐶 × 𝐼𝐼, Union 𝐶𝐶 ∪ 𝐼𝐼, Difference 𝐶𝐶 − 𝐼𝐼. 
 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 14 30.01.2020 

→ Derived: 
• Intersection 𝐶𝐶 ∩ 𝐼𝐼 = 𝐶𝐶 − (𝐶𝐶 − 𝐼𝐼). 
• Natural Join 𝐶𝐶 ⋈𝑐𝑐 𝐼𝐼 = Π𝐴𝐴∪𝐵𝐵�𝜎𝜎𝐶𝐶=𝐷𝐷(𝜌𝜌𝐶𝐶→D(𝐶𝐶) × 𝐼𝐼)�: a join on equality of shared attributes 
• Theta Join 𝐶𝐶 ⋈𝜃𝜃 𝐼𝐼 = 𝜎𝜎𝜃𝜃(𝐶𝐶 × 𝐼𝐼): a join that involves a predicate (any condition 𝜃𝜃) 
• Equi-Join 𝐶𝐶 ⋈𝐴𝐴=𝐵𝐵 𝐼𝐼 = 𝜎𝜎𝐴𝐴=𝐵𝐵(𝐶𝐶 × 𝐼𝐼): a join where 𝜃𝜃 is an equality (most common in practice) 
• Semi-Join Π𝐴𝐴1,…,𝐴𝐴𝑛𝑛(𝐶𝐶 ⋉ 𝐼𝐼) where 𝐶𝐶𝑖𝑖 are the attributes of 𝐶𝐶. 

→ Special: Renaming 𝜌𝜌𝐵𝐵1,…,𝐵𝐵𝑛𝑛(𝐶𝐶) 
 
RA Plan Execution 

• Join: use memory an I/O cost to pick the best algo (BNLJ, SMJ, HJ) 
• Selection: use indexes 
• Projection: identify distinct values with hashing or sorting 

 
Optimization 
→ Logical: find equivalent plans and choose the one minimizing # of tuples at each step 
→ Physical: find algo with lowers I/O cost based on physical params (buffer size) & data size (histograms) 
 
Logical: Always try (if possible) to push down Projections and Selections so they occur as soon as possible. 
Physical 

1. Estimate the cost for different indexes types 
Example: range query for 𝑃𝑃 entries 
→ Clustered 

• Traverse ℎ = log𝑓𝑓 1.5𝐹𝐹 
• Scan 1 random I/O + �𝑀𝑀−1

𝑃𝑃
� sequential I/O 

→ Unclustered 
• Traverse ℎ = log𝑓𝑓 1.5𝐹𝐹 
• Scan ~𝑃𝑃 random I/O 

 
2. Histograms & I/O Cost Estimation 

A histogram is a set of value ranges (buckets) and the frequencies of each bucket occurrence. 
How to choose the bucket? 

• Full: bucket size = 1 
• Uniform 
• Equi-width: all buckets have the same size 
• Equi-depth: all buckets have the same number of items (total frequency) 

We must maintain histograms by periodically update them. 
 
Catalogs contain #tuples & #pages for relations; #distinct key values & #pages for indexes; histograms 
Enumerate alternative plans and estimate their costs without testing them. We use the catalog information 
for that. 
 
 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 15 30.01.2020 

 
Estimating query result cardinality 
SELECT attr1, … , attrn 
FROM R1, … , Rk 
WHERE cond1 AND … AND condm 
 
Result Cardinality = 𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑(R1 × … × Rk) × ∏𝐶𝐶𝐹𝐹(𝑐𝑐𝑆𝑆𝑡𝑡𝑑𝑑𝑖𝑖) where 𝐶𝐶𝐹𝐹 is reduction factor. 
 

13. Transactions 
A transaction is a sequence of one ore more operations (read and write) which reflects a single real-world 
transition (transfer money, purchase products, register for a class) 
 
Motivations 

1. Recovery & Durability: make sure that TXNs are either durably stored in full or not at all. 
2. Concurrent execution: have the DBMS run several TXNs concurrently, to keep CPU going. 

 
Properties 

• Atomic: all or nothing (commits or aborts) 
• Consistent: tables must always satisfy integrity constraints 
• Isolated: should not be able to observe changes from other TXNs during the run 
• Durable: the effect of a TXN must persist (committed data must be written to disk) 

 
1. Atomicity and Durability via Logging 

The log is a list of modifications that is duplexed and archived on stable disk. 
Record information (diff) for every update → ordered list of actions: easy to undo/redo any action. 
Why we need that? Partial results of transaction should be written to disk because not enough 
memory/time to wait for the whole TXN. We need a log to undo these partial results. 
 
Write-Ahead Logging: write log from memory to disk before writing data to disk. 
 

2. Concurrency: parallelizing TXNs without creating conflicts 
Interleave transactions to speed up processing (one uses CPU while other uses disk) but this may create 
conflicts! 
When an interleaving schedule (e.g. 𝐶𝐶1(𝐶𝐶) → 𝐶𝐶2(𝐶𝐶) → 𝐶𝐶2(𝑇𝑇) → 𝐶𝐶1(𝑇𝑇)) is different from any serial order (e.g. 
𝐶𝐶1 then 𝐶𝐶2 or 𝐶𝐶2 then 𝐶𝐶1) we say that this schedule is not serializable. 
→ So, a serializable schedule is a schedule that is equivalent (same effect) to some serial execution of the 
transaction. 
Conflict: two actions of different TXNs involve the same variable and at least one of them is write. 
 

3. Conflict Serializability, Locking and Deadlock 
Schedule S is conflict serializable if S is conflict equivalent (conflicting actions are in the same order) to 
some serial schedule. 



Database Management System Implementation  EURECOM 

Mokhles BOUZAIEN 16 30.01.2020 

Theorem: schedule is conflict serializable if and only if its conflict graph is acyclic. 
 
Locking: require each transaction to obtain a lock before accessing a data object to prevent concurrent 
access. 
 
Also See Deadlock! 
 
 
 
 
 
 
 
 
 
 
 


