
Mokhles Bouzaien  EURECOM 

Advanced Statistical Inference 
Maurizio Filippone 

 
 

Lecture1: Introduction 
Recap on linear algebra & probability theory. 
 
Lecture 2: Bayesian Linear Regression 
Preliminaries 
Probabilities 

Sum rule: 𝑝𝑝(𝑥𝑥) = ∫𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 
Product rule: 𝑝𝑝(𝑥𝑥,𝑦𝑦) = 𝑝𝑝(𝑥𝑥|𝑦𝑦)𝑝𝑝(𝑦𝑦) = 𝑝𝑝(𝑦𝑦|𝑥𝑥)𝑝𝑝(𝑥𝑥) 

Expectations 
 Discrete: 𝑥𝑥� = 𝔼𝔼𝑝𝑝(𝑥𝑥)(𝑥𝑥) = ∑𝑥𝑥𝑥𝑥(𝑥𝑥) 
 Continuous: 𝑥𝑥� = 𝔼𝔼𝑝𝑝(𝑥𝑥)(𝑥𝑥) = ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑. In general, 𝔼𝔼𝑝𝑝(𝑥𝑥)[𝑓𝑓(𝑥𝑥)] = ∫𝑓𝑓(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑 
Mean and Covariance: 
 𝜇𝜇 = 𝔼𝔼𝑝𝑝(𝑥𝑥)[𝑥𝑥] 
 𝜎𝜎2 = 𝔼𝔼𝑝𝑝(𝑥𝑥)[(𝑥𝑥 − 𝜇𝜇)2] 
 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝔼𝔼𝑝𝑝(𝑥𝑥)[(𝑥𝑥 − 𝜇𝜇)(𝑥𝑥 − 𝜇𝜇)𝑇𝑇] = 𝔼𝔼𝑝𝑝(𝑥𝑥)[𝑥𝑥𝑥𝑥𝑇𝑇] − 𝜇𝜇𝜇𝜇𝑇𝑇 
The Gaussian Distribution 
 𝑝𝑝(𝑣𝑣|𝜇𝜇,𝜎𝜎2) = 1

𝜎𝜎√2𝜋𝜋
exp �− 1

2𝜎𝜎2
(𝑣𝑣 − 𝜇𝜇)2� 

The Multivariate Gaussian Distribution 
 𝑝𝑝(𝒗𝒗|𝝁𝝁,𝚺𝚺) = 𝒩𝒩(𝒗𝒗|𝝁𝝁,𝚺𝚺) where 𝒩𝒩(𝒗𝒗|𝝁𝝁,𝚺𝚺) = 1

(2𝜋𝜋)𝐷𝐷/2|𝚺𝚺|1/2 exp �− 1
2

(𝒗𝒗 − 𝝁𝝁)𝑇𝑇𝚺𝚺−1(𝒗𝒗 − 𝝁𝝁)� 

 The eigenvalues of the covariance give us the alignment of the distribution. 
 
Loss Minimization in Linear Regression 
Linear Models for Regression: 𝑓𝑓(𝒙𝒙) = ∑𝑤𝑤𝑖𝑖𝜙𝜙𝑖𝑖(𝒙𝒙) = 𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) 
It is a linear model because the parameters appear in a linear way, not because of the linear basis functions. 
Quadratic loss function: ℒ = ∑(𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝒊𝒊)2 = ‖𝒚𝒚 − 𝑿𝑿𝑿𝑿‖2. Solution: ∇𝒘𝒘ℒ = 0 ⇒ 𝒘𝒘� = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒚𝒚 
Probabilistic Interpretation of Loss: minimizing the quadratic loss is equivalent to minimizing the Gaussian 
likelihood function exp(−𝛾𝛾ℒ) = exp(−𝛾𝛾‖𝒚𝒚 − 𝑿𝑿𝑿𝑿‖2) ∝ 𝒩𝒩 �𝒚𝒚|𝑿𝑿𝑿𝑿, 1

2𝛾𝛾
�. 

Model Selection 
Loss minimization/likelihood maximization is not sufficient to select the best model because we can have 
generalization problems due to overfitting. 
Cross-validation: evaluate models on randomly picked data using validation loss or validation log-likelihood. 
 
 



Mokhles Bouzaien  EURECOM 

Bayesian Inference 
Model parameters are considered as probability distributions. Going from 𝑝𝑝(𝒘𝒘) to 𝑝𝑝(𝒘𝒘|𝑿𝑿,𝒚𝒚). 

 Bayes rule: 𝑝𝑝(𝒘𝒘|𝑿𝑿,𝒚𝒚) = 𝑝𝑝�𝒚𝒚�𝑿𝑿,𝒘𝒘�𝑝𝑝(𝒘𝒘)
∫𝑝𝑝�𝒚𝒚�𝑿𝑿,𝒘𝒘�𝑝𝑝(𝒘𝒘)𝑑𝑑𝑑𝑑

= 𝑝𝑝�𝒚𝒚�𝑿𝑿,𝒘𝒘�𝑝𝑝(𝒘𝒘)
𝑝𝑝�𝒚𝒚�𝑿𝑿�  

Posterior density 𝑝𝑝(𝒘𝒘|𝑿𝑿,𝒚𝒚): the distribution over parameters after observing the data. 
Likelihood 𝑝𝑝(𝒚𝒚|𝑿𝑿,𝒘𝒘): measure of fitness. 
Prior density 𝑝𝑝(𝒘𝒘): anything we know about parameters before we see any data. 
Marginal likelihood 𝑝𝑝(𝒚𝒚|𝑿𝑿): normalization constant. 

 
When can we compute the posterior? When the multiplication results is a posterior of same type of density 
as the prior. 
Why it is important? Because we do not have to calculate 𝑝𝑝(𝒚𝒚|𝑋𝑋) because we know the form of 𝑝𝑝(𝒘𝒘|𝑿𝑿,𝒚𝒚). 
 
Finding posterior parameters 
The posterior must be Gaussian: 

𝑝𝑝(𝒘𝒘|𝑿𝑿,𝒚𝒚,𝝈𝝈2) ∝ exp �−
1
2

(𝒘𝒘− 𝝁𝝁)𝑇𝑇𝚺𝚺−1(𝒘𝒘− 𝝁𝝁)� ∝ exp �−
1
2

(𝒘𝒘𝑇𝑇𝚺𝚺−1𝒘𝒘 − 2𝒘𝒘𝑇𝑇𝚺𝚺−1𝝁𝝁)� 

On the other hand, we multiply the likelihood and the prior: 

𝑝𝑝(𝒚𝒚|𝑿𝑿,𝒘𝒘)𝑝𝑝(𝒘𝒘) ∝ exp �−
1

2𝜎𝜎2
(𝒚𝒚 − 𝑿𝑿𝑿𝑿)𝑇𝑇(𝒚𝒚 − 𝑿𝑿𝑿𝑿)� exp �−

1
2
𝒘𝒘𝑇𝑇𝑺𝑺−1𝒘𝒘�

∝ exp �−
1
2
�𝒘𝒘𝑇𝑇 �

1
𝜎𝜎2

𝑿𝑿𝑇𝑇𝑿𝑿 + 𝑺𝑺−1�𝒘𝒘 −
2
𝜎𝜎2

𝒘𝒘𝑇𝑇𝑿𝑿𝑇𝑇𝒚𝒚�� 

We extract parameters: 

 Covariance: 𝚺𝚺 = � 1
𝜎𝜎2
𝑿𝑿𝑇𝑇𝑿𝑿 + 𝑺𝑺−1�

−1
 

 Mean: 𝝁𝝁 = 1
𝜎𝜎2
𝚺𝚺𝑿𝑿𝑇𝑇𝒚𝒚 

  
Introducing basis functions 
We replace 𝑋𝑋 of size (𝑁𝑁,𝐷𝐷) by 𝜙𝜙(𝑋𝑋) of size (𝑁𝑁,𝐷𝐷′) (expending or compressing the features). 

Covariance: 𝚺𝚺 = � 1
𝜎𝜎2
𝝓𝝓𝑇𝑇𝝓𝝓 + 𝑺𝑺−1�

−1
 

 Mean: 𝝁𝝁 = 1
𝜎𝜎2
𝚺𝚺𝝓𝝓𝑇𝑇𝒚𝒚 

 Prediction: 𝑝𝑝(𝑦𝑦∗|𝑿𝑿,𝒚𝒚,𝒙𝒙∗,𝜎𝜎2) = 𝒩𝒩�𝑦𝑦∗|𝝓𝝓(𝒙𝒙∗)𝑇𝑇𝝁𝝁,𝜎𝜎2 + 𝝓𝝓(𝒙𝒙∗)𝑇𝑇𝚺𝚺𝝓𝝓(𝒙𝒙∗)� 
 
 
Lecture 3: Gaussian Processes 
Introduction 
How to choose which basis functions (polynomials, trigonometric, etc.) to use? 
Gaussian Processes learn a probabilistic combination of an infinite set of basis functions. 
 
Weight Space View 
Recap: 
Modeling observations as noisy realizations of a linear combination of features 𝑝𝑝(𝒚𝒚|𝒘𝒘,𝑿𝑿,𝜎𝜎2) = 𝒩𝒩(𝑿𝑿𝑿𝑿,𝜎𝜎2𝑰𝑰). 
Gaussian prior over model parameters: 𝑝𝑝(𝑤𝑤) = 𝒩𝒩(𝟎𝟎,𝑺𝑺). 
 
BLR as a Kernel Machine 
 Working with 𝜓𝜓(. ) costs 𝑂𝑂(𝐷𝐷2) storage and 𝑂𝑂(𝐷𝐷3) time 

Working with 𝑘𝑘(. , . ) costs 𝑂𝑂(𝑁𝑁2) storage and 𝑂𝑂(𝑁𝑁3) time 



Mokhles Bouzaien  EURECOM 

We can pick 𝑘𝑘(. , . ) so that 𝜓𝜓(. ) is infinite dimensional. 

𝑘𝑘(𝒙𝒙,𝒙𝒙′) = exp �− �𝒙𝒙−𝒙𝒙′�
2

� =  𝜓𝜓(𝒙𝒙)𝑇𝑇𝜓𝜓(𝒙𝒙′) where 𝜓𝜓(𝒙𝒙) = exp �− 𝒙𝒙2

2
� �1,𝒙𝒙, 𝒙𝒙

2

√2!
, … �

𝑇𝑇
 

When working with a kernel, we are implicitly working with a finite number of basis functions. 
Using Woodbury identity, we can write: 

𝚺𝚺 = �
1
𝜎𝜎2

𝚽𝚽𝑇𝑇𝚽𝚽 + 𝑺𝑺−1�
−1

= 𝑺𝑺 − 𝑺𝑺𝚽𝚽𝑇𝑇(𝜎𝜎2𝑰𝑰 + 𝚽𝚽𝑺𝑺𝚽𝚽𝑇𝑇)−1𝚽𝚽𝑺𝑺 

We can rewrite the variance: 
𝜎𝜎2 + 𝜙𝜙∗𝑇𝑇𝚺𝚺𝜙𝜙∗ = 𝜎𝜎2 + 𝜙𝜙∗𝑇𝑇𝑺𝑺𝜙𝜙∗ − 𝜙𝜙∗𝑇𝑇𝑺𝑺𝚽𝚽T(𝜎𝜎2𝑰𝑰 + 𝚽𝚽𝑺𝑺𝚽𝚽𝑇𝑇)−1𝚽𝚽𝑺𝑺𝜙𝜙∗ = 𝜎𝜎2 + 𝑘𝑘∗∗ − 𝒌𝒌∗𝑇𝑇(𝜎𝜎𝑰𝑰 + 𝑲𝑲)−1𝒌𝒌∗ 

 
We can also rewrite the mean by applying Woodbury identity twice (no thanks!). 

𝜙𝜙∗𝑇𝑇𝜇𝜇 = ⋯ = 𝜙𝜙∗𝑇𝑇𝑺𝑺𝚽𝚽𝑇𝑇(𝜎𝜎2𝑰𝑰 + 𝚽𝚽𝑺𝑺𝚽𝚽𝑇𝑇)−1𝒕𝒕 = 𝒌𝒌∗𝑇𝑇(𝜎𝜎𝑰𝑰 + 𝑲𝑲)−1𝒕𝒕 
Where 

𝜓𝜓(𝒙𝒙) = 𝑺𝑺1/2𝜙𝜙(𝒙𝒙) 
𝑘𝑘∗∗ = 𝑘𝑘(𝒙𝒙∗,𝒙𝒙∗) = 𝜓𝜓(𝒙𝒙∗)𝑇𝑇𝜓𝜓(𝒙𝒙∗) 

(𝒌𝒌∗)𝑖𝑖 = 𝑘𝑘(𝒙𝒙∗,𝒙𝒙𝑖𝑖) = 𝜓𝜓(𝒙𝒙∗)𝑇𝑇𝜓𝜓(𝒙𝒙𝑖𝑖) 
(𝑲𝑲)𝑖𝑖𝑖𝑖 = 𝑘𝑘�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = 𝜓𝜓(𝒙𝒙𝑖𝑖)𝑇𝑇𝜓𝜓�𝒙𝒙𝑗𝑗� 

𝜙𝜙 is a 𝐷𝐷 by infinite matrix. 
 
Function Space View 
We will consider an infinite number of random variables 𝑓𝑓(𝑥𝑥) indexed by 𝑥𝑥. The covariance of those variables 
is an infinite by infinite zero matrix except on the diagonal where we have the variance of each variable. 

𝑘𝑘(𝒙𝒙,𝒙𝒙′) = 𝛼𝛼 exp(−𝛽𝛽‖𝒙𝒙 − 𝒙𝒙′‖2) 
Using the distance kernel we can impose nearby variables to have high covariance. 
And the we select 𝑁𝑁 variables by selecting the corresponding rows and columns from the covariance matrix. 
 Marginal distribution 𝒇𝒇 = �𝑓𝑓(𝑥𝑥1), … , 𝑓𝑓(𝑥𝑥𝑁𝑁)�𝑇𝑇 is 𝑝𝑝(𝒇𝒇|𝑿𝑿) = 𝒩𝒩(𝟎𝟎,𝑲𝑲) 
 Conditional distribution of 𝑓𝑓∗ given 𝒇𝒇 is 𝑝𝑝(𝑓𝑓∗|𝑓𝑓,𝒙𝒙∗,𝑿𝑿) = 𝒩𝒩(𝑚𝑚� , 𝑠̅𝑠2) 
  Where   𝑚𝑚� = 𝒌𝒌∗𝑇𝑇𝑲𝑲−1𝒇𝒇 
    𝑠̅𝑠2 = 𝒌𝒌∗∗ − 𝒌𝒌∗𝑇𝑇𝑲𝑲−1𝒌𝒌∗ 
(posterior and prediction part is missing) 
 
Lecture 4: Bayesian Classification 
Classification algorithms: 

• Probabilistic: Bayes classifier, Logistic regression. 
• Non-probabilistic: K-nearest neighbors, Support Vector Machines. 
• Many others … 

 
Probabilistic classifiers produce a probability of class membership: 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘|𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑋𝑋, 𝑡𝑡) 
Non-probabilistic classifiers produce a hard assignment, e.g. 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1 or 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 0. 
 
Probabilities provide us with more information: 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1) = 0.6 is more useful than 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1. 
This is very important when misclassification cost is high and imbalanced (diseased/healthy person). 
 
Logistic Regression 
We can apply a logistic function ℎ(. ) To 𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛;𝑤𝑤) = 𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 to squash it between 0 and 1. 
We get 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘|𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑋𝑋, 𝑡𝑡) = ℎ�𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛;𝑤𝑤)� = ℎ(𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) = 1

1+exp(−𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) 

Defining a prior: 𝑝𝑝(𝑤𝑤) = ∏ 𝒩𝒩(0,𝜎𝜎2)𝐷𝐷
𝑑𝑑=1  



Mokhles Bouzaien  EURECOM 

Defining a likelihood: 
Assume independence: the noises of observations are independent: 𝑝𝑝(𝑡𝑡,𝑋𝑋,𝑤𝑤) = ∏𝑝𝑝(𝑡𝑡𝑛𝑛|𝑥𝑥𝑛𝑛,𝑤𝑤) 
For a binary classification: 𝑃𝑃(𝑡𝑡𝑛𝑛 = 0|𝑥𝑥𝑛𝑛,𝑤𝑤) = 1 − 𝑃𝑃(𝑡𝑡𝑛𝑛 = 1|𝑥𝑥,𝑤𝑤) = 1 − ℎ(𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛) 

Posterior: 𝑝𝑝(𝑤𝑤|𝑋𝑋, 𝑡𝑡,𝜎𝜎2) = 𝑝𝑝(𝑡𝑡|𝑋𝑋,𝑤𝑤)𝑝𝑝(𝑤𝑤)
𝑝𝑝�𝑡𝑡�𝑋𝑋� = 𝑝𝑝(𝑡𝑡|𝑋𝑋,𝑤𝑤)𝑝𝑝(𝑤𝑤)

∫𝑝𝑝(𝑡𝑡|𝑋𝑋,𝑤𝑤)𝑝𝑝(𝑤𝑤)𝑑𝑑𝑑𝑑
 (can’t calculate the integral ∫ � 1

1+𝑒𝑒𝑒𝑒𝑒𝑒
�
𝑛𝑛

…) 

We can compute 𝑝𝑝(𝑡𝑡|𝑋𝑋,𝑤𝑤)𝑝𝑝(𝑤𝑤) = 𝑔𝑔(𝑤𝑤,𝑋𝑋, 𝑡𝑡) 
We have then three options: 

1. Find the most likely value of 𝑤𝑤 
2. Approximate 𝑝𝑝(𝑤𝑤|𝑋𝑋, 𝑡𝑡) 
3. Sample from 𝑝𝑝(𝑤𝑤|𝑋𝑋, 𝑡𝑡) 

 
MAP estimate 
𝑔𝑔(𝑤𝑤,𝑋𝑋, 𝑡𝑡) ∝ 𝑝𝑝(𝑤𝑤|𝑋𝑋, 𝑡𝑡). So, if  𝑤𝑤� maximizes 𝑔𝑔 it also maximizes the prior (gradient descent). 
Once we have 𝑤𝑤� , we make prediction with ℎ(𝑤𝑤�𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) 
We get a linear boundary (linear model): ℎ(𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) = 0.5 ⇔ 𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 0. 
We can approximate 𝑝𝑝(𝑤𝑤|𝑋𝑋, 𝑡𝑡) with a Gaussian 𝑞𝑞(𝑤𝑤|𝑋𝑋, 𝑡𝑡) = 𝒩𝒩(𝜇𝜇, Σ), where: 

• 𝜇𝜇 = 𝑤𝑤� = arg max log𝑔𝑔 (arg max 𝑝𝑝 should be a good approximation of the Gaussian mean) 

• Σ−1 = −𝜕𝜕2 log𝑔𝑔
𝜕𝜕𝜕𝜕𝜕𝜕𝑤𝑤𝑇𝑇 (if g is Gaussian, we get directly the covariance matrix) 

Prediction: 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1|𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑋𝑋, 𝑡𝑡) = 𝔼𝔼𝒩𝒩(𝜇𝜇,Σ)�𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1|𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑤𝑤)� = ∫𝒩𝒩(𝜇𝜇, Σ) 1
1+exp(−𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑 (still can’t 

calculate this integral). 
The solution is to sample (we know how to sample from Gaussian) and then average. 
Draw 𝑆𝑆 samples {𝑤𝑤1, … ,𝑤𝑤𝑆𝑆} from the distribution: 𝔼𝔼𝒩𝒩(𝜇𝜇,Σ)�𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1|𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑤𝑤)� ≈ 1

𝑆𝑆
∑ 1
1+exp�−𝑤𝑤𝑠𝑠

𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛�
 

 
Bayesian Classifier 

Based on Bayes rule: 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘|𝑿𝑿, 𝒕𝒕,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑃𝑃�𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛�𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘,𝑿𝑿, 𝒕𝒕�𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛=𝑘𝑘)
∑𝑃𝑃�𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛�𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑗𝑗,𝑿𝑿, 𝒕𝒕�𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛=𝑗𝑗) 

• Likelihood 𝑃𝑃(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛|𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘,𝑋𝑋, 𝑡𝑡): how likely to observe 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 if it’s in class 𝑘𝑘? We can choose this 
distribution as we like depending on our data (Gaussian, binomial likelihood) → Training data with 
𝑡𝑡 = 𝑘𝑘 is used to determine params of likelihood for class 𝑘𝑘 (e.g. mean and covariance). 

• Prior 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘): this is not related to data (there is no 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛). 
o There are fewer instances of class 𝑘𝑘 = 0 means 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 0) < 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1). 
o No prior preference means 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 0) = 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1). 
o Class 0 is very rare means 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 0) ≪ 𝑃𝑃(𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 1). 

 
Naïve-Bayes 
We add the assumption that all features of 𝑥𝑥 are independent. 

𝑝𝑝(𝑥𝑥) = 𝑝𝑝(𝑥𝑥𝑑𝑑|𝑥𝑥𝑑𝑑−1, … , 𝑥𝑥1)𝑝𝑝(𝑥𝑥𝑑𝑑−1|𝑥𝑥𝑑𝑑−2, … , 𝑥𝑥1) …𝑝𝑝(𝑥𝑥1) = 𝑝𝑝(𝑥𝑥𝑑𝑑)𝑝𝑝(𝑥𝑥𝑑𝑑−1) … 𝑝𝑝(𝑥𝑥1) 



Mokhles Bouzaien  EURECOM 

 
Step1: fitting the class-conditional densities, i.e. find features’ means and variances for each class. 
Step2: evaluate densities at test point. 

 
Performance Evaluation 
0/1 loss 
proportion of times classifier is wrong. Mean loss is defined as 1

𝑁𝑁
∑𝛿𝛿(𝑡𝑡𝑛𝑛 ≠ 𝑡𝑡𝑛𝑛∗) 

 
+ Used for binary or multiclass classification. 
+ Simple to compute and give a single value. 
− Does not consider class imbalance  
 
Sensitivity and specificity 
True/False Negatives/Positives: true means correctly classified, and positives refer to class 1. 
Sensitivity 𝑆𝑆𝑒𝑒 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
 (proportion of diseased classified as diseased). 

Specificity 𝑆𝑆𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (proportion of healthy classified as healthy). 

We would like both to be as high as possible 
 

ROC Analysis 
The Receiver Operating Characteristic curve shows how 𝑆𝑆𝑒𝑒 and 1 − 𝑆𝑆𝑝𝑝 vary as the 
threshold changes. 
We can quantify the performance by computing the area under the ROC curve 
(AUC). 
 

Confusion Matrix 
  True Class 
  1 0 

Predicted Class 
1 TP FP 
0 FN TN 

 
 
Lecture 5: Variational Inference 
The aim of this part is to approximate the posterior 𝑝𝑝(𝒘𝒘|𝑿𝑿, 𝒕𝒕) 

1- Introduce 𝑞𝑞(𝒘𝒘) 
For simplicity 𝑞𝑞(𝒘𝒘) = ∏𝑞𝑞(𝑤𝑤𝑖𝑖) = ∏𝒩𝒩�𝑤𝑤𝑖𝑖|𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2� (it’s a choice and other alternatives can be used). 

2- Distance between 𝑞𝑞(𝒘𝒘) and 𝑝𝑝(𝒘𝒘|𝑿𝑿, 𝒕𝒕) 

A possible distance can be 𝐾𝐾𝐾𝐾[𝑞𝑞(𝒘𝒘)‖𝑝𝑝(𝒘𝒘|𝑿𝑿, 𝒕𝒕)] = 𝔼𝔼𝑞𝑞(𝒘𝒘) �log 𝑞𝑞(𝒘𝒘)
𝑝𝑝�𝒘𝒘�𝑿𝑿, 𝒕𝒕�� = 𝔼𝔼𝑞𝑞(𝒘𝒘)[log 𝑞𝑞(𝒘𝒘)] − 𝔼𝔼𝑞𝑞(𝒘𝒘)[log𝑝𝑝(𝒘𝒘|𝑿𝑿, 𝒕𝒕)] 

This is not a distance! Not symmetric! Does not satisfy triangular equality. 



Mokhles Bouzaien  EURECOM 

The second term is problematic because the posterior is intractable. 
After rearranging: log𝑝𝑝(𝒕𝒕|𝑿𝑿) − 𝐾𝐾𝐾𝐾[𝑞𝑞(𝒘𝒘)‖𝑝𝑝(𝒘𝒘|𝑿𝑿, 𝒕𝒕)] = 𝔼𝔼𝑞𝑞(𝒘𝒘)[log𝑝𝑝(𝒕𝒕|𝒘𝒘,𝑿𝑿)] − 𝐾𝐾𝐾𝐾[𝑞𝑞(𝒘𝒘)‖𝑝𝑝(𝒘𝒘)] 
We maximize the objective = 𝔼𝔼𝑞𝑞(𝒘𝒘)[log𝑝𝑝(𝒕𝒕|𝒘𝒘,𝑿𝑿)] − 𝐾𝐾𝐾𝐾[𝑞𝑞(𝒘𝒘)‖𝑝𝑝(𝒘𝒘)] wrt 𝑞𝑞(𝒘𝒘), i.e. change 𝑞𝑞 params. 

3- Optimization 

If 𝑝𝑝(𝑤𝑤) = ∏𝒩𝒩(𝑤𝑤𝑖𝑖|0, 𝑠𝑠2) we obtain 𝐾𝐾𝐾𝐾[𝑞𝑞(𝒘𝒘)‖𝑝𝑝(𝒘𝒘)] = 1
2
∑ �log 𝑠𝑠2

𝜎𝜎𝑖𝑖
2 − 1 + 𝜎𝜎𝑖𝑖

2

𝑠𝑠2
+ 𝜇𝜇𝑖𝑖

2

𝑠𝑠2
� 

𝔼𝔼𝑞𝑞(𝒘𝒘)[log𝑝𝑝(𝒕𝒕|𝒘𝒘,𝑿𝑿)] = ∫𝑞𝑞(𝒘𝒘) log𝑝𝑝(𝒕𝒕|𝒘𝒘,𝑿𝑿)𝑑𝑑𝒘𝒘 ≈ 1
𝑁𝑁𝑀𝑀𝑀𝑀

∑ log𝑝𝑝�𝒕𝒕|𝒘𝒘� (ℎ),𝑿𝑿�𝑁𝑁𝑀𝑀𝑀𝑀
ℎ=1  where 𝒘𝒘� (ℎ) are sampled from 𝑞𝑞(𝒘𝒘) 

such that �𝒘𝒘� (ℎ)�𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜖𝜖𝑖𝑖𝜎𝜎𝑖𝑖. 

Now we maximize obȷectıve�  = 1
𝑁𝑁𝑀𝑀𝑀𝑀

∑ log 𝑝𝑝�𝒕𝒕|𝒘𝒘� (ℎ),𝑿𝑿�𝑁𝑁𝑀𝑀𝑀𝑀
ℎ=1 − 𝐾𝐾𝐾𝐾[𝑞𝑞(𝒘𝒘)‖𝑝𝑝(𝒘𝒘)] with gradient-based optimization. 

vapr′ = vpar +
𝛼𝛼𝑡𝑡
2
∇vpar�obȷectıve� �;𝛼𝛼𝑡𝑡 → 0 

 
 
Lecture 6: Bayesian Unsupervised Learning 
K-means 
Each cluster is defined by a position in the input space 𝝁𝝁𝒌𝒌 = [𝜇𝜇𝑘𝑘1, 𝜇𝜇𝑘𝑘2]𝑇𝑇. 
Each 𝒙𝒙𝒏𝒏 is assigned to its closest cluster. 
Euclidean distance is usually used: 𝑑𝑑𝑛𝑛𝑛𝑛 = (𝒙𝒙𝒏𝒏 − 𝝁𝝁𝒌𝒌)𝑇𝑇(𝒙𝒙𝒏𝒏 − 𝝁𝝁𝒌𝒌) 
 
There is no analytical solution, so we use an iterative algorithm: 

1. Randomly pick 𝝁𝝁𝟏𝟏, … ,𝝁𝝁𝑲𝑲 
2. Assign each 𝒙𝒙𝒏𝒏 to the closest 𝝁𝝁𝒌𝒌 
3. Define 𝑧𝑧𝑛𝑛𝑛𝑛 = 1 if 𝒙𝒙𝒏𝒏 is assigned to 𝝁𝝁𝒌𝒌 
4. Update 𝝁𝝁𝒌𝒌 to the average of 𝒙𝒙𝒏𝒏’s 𝝁𝝁𝒌𝒌 = ∑𝑧𝑧𝑛𝑛𝑛𝑛𝒙𝒙𝒏𝒏

∑𝑧𝑧𝑛𝑛𝑛𝑛
 

5. Return to 2 until assignment do not change 
 
Kernelizing K-means 

𝑑𝑑𝑛𝑛𝑛𝑛 = (𝒙𝒙𝒏𝒏 − 𝝁𝝁𝒌𝒌)𝑇𝑇(𝒙𝒙𝒏𝒏 − 𝝁𝝁𝒌𝒌) = �𝒙𝒙𝒏𝒏 −
∑𝑧𝑧𝑛𝑛𝑛𝑛𝒙𝒙𝒏𝒏
∑ 𝑧𝑧𝑛𝑛𝑛𝑛

�
𝑇𝑇

�𝒙𝒙𝒏𝒏 −
∑𝑧𝑧𝑛𝑛𝑛𝑛𝒙𝒙𝒏𝒏
∑ 𝑧𝑧𝑛𝑛𝑛𝑛

�

= �𝒙𝒙𝒏𝒏 − 𝑁𝑁𝑘𝑘−1�𝑧𝑧𝑛𝑛𝑛𝑛𝒙𝒙𝒏𝒏�
𝑇𝑇
�𝒙𝒙𝒏𝒏 − 𝑁𝑁𝑘𝑘−1�𝑧𝑧𝑛𝑛𝑛𝑛𝒙𝒙𝒏𝒏�

= 𝒙𝒙𝒏𝒏𝑻𝑻𝒙𝒙𝒏𝒏 − 2𝑁𝑁𝑘𝑘−1� 𝑧𝑧𝑚𝑚𝑚𝑚𝒙𝒙𝒎𝒎𝑻𝑻 𝒙𝒙𝒏𝒏
𝑚𝑚

+ 𝑁𝑁𝑘𝑘−2� 𝑧𝑧𝑚𝑚𝑚𝑚𝑧𝑧𝑙𝑙𝑙𝑙𝒙𝒙𝒎𝒎𝑻𝑻 𝒙𝒙𝒍𝒍
𝑚𝑚,𝑙𝑙

= 𝑘𝑘(𝒙𝒙𝒏𝒏,𝒙𝒙𝒏𝒏) − 2𝑁𝑁𝑘𝑘−1� 𝑧𝑧𝑚𝑚𝑚𝑚𝑘𝑘(𝒙𝒙𝒏𝒏,𝒙𝒙𝒎𝒎)
𝑚𝑚

+ 𝑁𝑁𝑘𝑘−2� 𝑧𝑧𝑚𝑚𝑚𝑚𝑧𝑧𝑙𝑙𝑙𝑙𝑘𝑘(𝒙𝒙𝒎𝒎,𝒙𝒙𝒍𝒍)
𝑚𝑚,𝑙𝑙

 

 
Algorithm: 

1. Choose a kernel and any necessary params 
2. Start with random assignments 𝑧𝑧𝑛𝑛𝑛𝑛 
3. For each 𝑥𝑥𝑛𝑛 assign it to the nearest center using the new distance 
4. Return to 3 until assignment do not change 

 
Mixture Models 
Can we hypothesis a function that could have generated the data? 


