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Reliable and Interpretable Artificial Intelligence 
Instructor: Prof. Dr. Martin Vechev 

 
Lecture 1: Introduction 
Motivation: adding perturbation to the input can 
change the prediction result, which can lead to 
dramatic results → mastering attacking and 
defending deep neural networks. 
 
Mathematical Certification: We can test all 
possible perturbed inputs by summarizing them 
using Symbolic Images. 
 
Tradeoff between Provability and Accuracy. 
 
Lecture 2: Adversarial Attacks I 
Adversarial examples are inputs to machine 
learning models that an attacker has 
intentionally designed to cause the model to 
make a mistake. 
Examples: geometric (rotation), reinforcement 
learning (→ wrong decisions), NLP (add 
adversarial text), audio processing (add noise). 
 
Robustness: returning correct output on all 
inputs (the input space is too large!) 
Local Robustness: returning correct output on 
inputs similar to the training set. 
 
Generating Adversarial Examples 
Targeted Attack: aims to misclassify the input to 
a specific label (𝑓𝑓(𝑥𝑥 + 𝜂𝜂) = 𝑡𝑡). 

Untargeted Attack: aims to misclassify the input 
to any wrong label (𝑓𝑓(𝑥𝑥 + 𝜂𝜂) ≠ 𝑓𝑓(𝑥𝑥)). 
 
Targeted Fast Gradient Sign Attack 

1. Compute perturbation 
𝜂𝜂 = 𝜖𝜖. 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖�∇𝑥𝑥𝐿𝐿𝑡𝑡(𝑥𝑥)� where ∇𝑥𝑥𝐿𝐿𝑡𝑡(𝑥𝑥) = �𝜕𝜕𝐿𝐿𝑡𝑡

𝜕𝜕𝑥𝑥1
, … � 

2. Perturb the input: 𝑥𝑥′ = 𝑥𝑥 − 𝜂𝜂 
3. Check if 𝑓𝑓(𝑥𝑥′) = 𝑡𝑡 

 
Untargeted FGSM 

1. Compute perturbation 
𝜂𝜂 = 𝜖𝜖. 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖�∇𝑥𝑥𝐿𝐿𝑠𝑠(𝑥𝑥)� 

2. Perturb the input: 𝑥𝑥′ = 𝑥𝑥 + 𝜂𝜂 
3. Check if 𝑓𝑓(𝑥𝑥′) ≠ 𝑠𝑠 

 
Similarity can be captured using 𝑙𝑙𝑝𝑝 norm: 

𝑥𝑥~𝑥𝑥′ 𝑖𝑖𝑓𝑓𝑓𝑓 ‖𝑥𝑥 − 𝑥𝑥′‖𝑝𝑝 < 𝜖𝜖 
We need to minimize ‖𝜂𝜂‖𝑝𝑝 to get similar input: 
Find   𝜂𝜂 
Minimize  ‖𝜂𝜂‖𝑝𝑝 
Such that  𝑓𝑓(𝑥𝑥 + 𝜂𝜂) = 𝑡𝑡 
  𝑥𝑥 + 𝜂𝜂 ∈ [0,1]𝑛𝑛 
 
To simplify, we replace hard objective by soft 
objective: if 𝑜𝑜𝑜𝑜𝑗𝑗𝑡𝑡(𝑥𝑥 + 𝜂𝜂) ≤ 0 then 𝑓𝑓(𝑥𝑥 + 𝜂𝜂) = 𝑡𝑡. 
Find   𝜂𝜂 
Minimize  ‖𝜂𝜂‖𝑝𝑝 + 𝑐𝑐. 𝑜𝑜𝑜𝑜𝑗𝑗𝑡𝑡(𝑥𝑥 + 𝜂𝜂) 
Such that  𝑥𝑥 + 𝜂𝜂 ∈ [0,1]𝑛𝑛 
 

Problem? The ‖𝜂𝜂‖∞ is converging slowly because 
it updates one dimension at once. 
Replace ‖𝜂𝜂‖∞ with proxy function: 

� max(0, |𝜂𝜂𝑖𝑖| − 𝜏𝜏)
𝑖𝑖

 

𝜏𝜏 is decreased with some factor at each iteration 
until one (or more) 𝜂𝜂𝑖𝑖 is greater than 𝜏𝜏. In that 
case ∇𝜂𝜂𝐿𝐿(𝜂𝜂) = (0,1,1). 
We stop after 𝑘𝑘 iterations (e.g., 𝜏𝜏𝑘𝑘 = 1/256), so 
we have ‖𝜂𝜂‖∞ ≤ 𝜏𝜏𝑘𝑘. 
 
Lecture 3: Adversarial Attacks II 
How to satisfy the constraint 𝑥𝑥 + 𝜂𝜂 ∈ [0,1]𝑛𝑛 ⇔
𝜂𝜂𝑖𝑖 ∈ [−𝑥𝑥𝑖𝑖 , 1 − 𝑥𝑥𝑖𝑖]? 
Projected Gradient Descent: minimize a 
function subject to constraint → move in the 
direction of negative gradient, then project onto 
the constraint set. 
We start by choosing a point 𝑥𝑥 correctly 
classified inside �𝑥𝑥𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜 , 𝜖𝜖� and for each step: 

1. 𝑥𝑥′ = 𝑥𝑥 + 0.1 × 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖�∇𝑥𝑥𝐿𝐿(𝑥𝑥)� 
2. If 𝑥𝑥′ ∉ �𝑥𝑥𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜, 𝜖𝜖� then project it to the 

feasible set 𝑥𝑥′′ = 𝑝𝑝𝑝𝑝𝑜𝑜𝑗𝑗𝑝𝑝𝑐𝑐𝑡𝑡 �𝑥𝑥′, �𝑥𝑥𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜, 𝜖𝜖�� 

3. 𝑥𝑥 ← 𝑥𝑥′′ 
4. Repeat until 𝑥𝑥 is misclassified. 

In that case, 𝑥𝑥 is an adversarial example. 
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Differencing Networks: given two NNs 𝑓𝑓1 and 
𝑓𝑓2 trained to learn the same function 𝑓𝑓∗:𝑋𝑋 → 𝐶𝐶, 
find 𝑥𝑥 ∈ 𝑋𝑋 such that 𝑓𝑓1(𝑥𝑥) ≠ 𝑓𝑓2(𝑥𝑥). 

𝑜𝑜𝑜𝑜𝑗𝑗𝑡𝑡(𝑥𝑥) = 𝑓𝑓1(𝑥𝑥)𝑡𝑡 − 𝑓𝑓2(𝑥𝑥)𝑡𝑡 
 
Pseudocode: 
while class�f1(x)� = class�f2(x)�: 

x = x + ϵ ×
∂objt(x)

∂x
 

return x 
 
Making 𝑓𝑓1 (evtl. 𝑓𝑓2) more (evtl. less) confident 
about 𝑡𝑡. 
 
Lecture 4a: Adversarial Defenses 
Can we avoid adversarial examples? Yes, by 
including them during training. 
Adversarial accuracy: test points correctly 
classified AND the network is robust around 
those points (no adversarial examples). 
 
Defense as Optimization Problem: try to 
find 𝑥𝑥′ around 𝑥𝑥 (in 𝑆𝑆(𝑥𝑥) = {𝑥𝑥′, ‖𝑥𝑥 − 𝑥𝑥′‖ < 𝜖𝜖}) 
that achieves high loss and minimize this high 
loss. More formally: 
Find   𝜃𝜃 
Minimize  𝜌𝜌(𝜃𝜃) 

Where   𝜌𝜌(𝜃𝜃) = 𝐸𝐸(𝑥𝑥,𝑦𝑦)∼𝐷𝐷 � max
x′∈S(x)

𝐿𝐿(𝜃𝜃, 𝑥𝑥′,𝑦𝑦)� 

 
Algorithm: 

1. Select a mini-batch 𝐵𝐵 ⊂ 𝐷𝐷 
2. Compute 𝐵𝐵𝑚𝑚𝑚𝑚𝑥𝑥 by applying PGD 

𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 = arg max
𝑥𝑥′∈𝑆𝑆(𝑥𝑥)

𝐿𝐿(𝜃𝜃, 𝑥𝑥′, 𝑦𝑦) 

3. Solve outer problem 

𝜃𝜃 ← 𝜃𝜃 −
1

|𝐵𝐵𝑚𝑚𝑚𝑚𝑥𝑥|� ∇𝜃𝜃𝐿𝐿(𝜃𝜃, 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 ,𝑦𝑦)
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦)∈𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

 

4. Repeat until reaching stopping criteria 
 
Lecture 4b: Mathematical Certification 
of Neural Networks 
Goal: an automated verifier to prove properties 
of realistic networks. 
We want to prove that ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖 ⊨ Φ ⇒ 𝑁𝑁(𝑖𝑖) ⊨ Ψ 
where 𝑁𝑁 is the neural network, Φ is a property 
over inputs (pre-condition) and Ψ is a property 
over outputs (post-condition). 

1. Define Φ formally. 
2. Verify that Φ satisfies Ψ. 

 
Certification Methods 
Sound method: able to always catch violated 
properties (certification method). 
Unsound method: could state a violated property 
as satisfied. 
Complete method: able to prove that a property 
holds when it actually holds. 
Incomplete method: no guarantee to prove a 
property that holds. 
→ tradeoff between scalability and completeness. 
 
Incomplete Methods 

1. Compute bounds by propagating Φ 
(which can be a region for example). 

2. Certify the property, i.e., every point in 
Ψ satisfies the property (e.g., classified as 3). 
 
Box Abstract Transformers (applying operators 
+#,−#,𝑅𝑅𝑝𝑝𝐿𝐿𝑈𝑈#, 𝜆𝜆# to vector intervals [𝑎𝑎, 𝑜𝑜]): not 
exact because it gives an over-approximation. 
It can succeed in verifying robustness or not 
(when the output boxes overlap). 
 
Lecture 5: Certification with Complete 
Methods 
MILP Problem Definition 
min∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗 :   objective 
∑ 𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑖𝑖𝑗𝑗 ≤ 𝑜𝑜𝑖𝑖:   constraints 
𝑙𝑙𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑖𝑖:   bounds on continuous 𝑥𝑥𝑗𝑗 
𝑥𝑥𝑗𝑗 ∈ ℤ:   some 𝑥𝑥𝑗𝑗 are integers 
 
1. Encode Affine Layer: 𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑜𝑜 
2. Encode ReLU Layer as MILP: 𝑦𝑦 = max(0, 𝑥𝑥) 

𝑦𝑦 ≤ 𝑥𝑥 − 𝑙𝑙 × (1 − 𝑎𝑎)
𝑦𝑦 ≥ 𝑥𝑥

𝑦𝑦 ≤ 𝑢𝑢 × 𝑎𝑎
𝑦𝑦 ≥ 0

𝑎𝑎 ∈ {0,1}

 

Where 𝑙𝑙 and 𝑢𝑢 are lower and upper bounds of the 
input 𝑥𝑥 already calculated.  
3. Encode Pre-Condition Φ = 𝐵𝐵∞(𝑥𝑥)𝜖𝜖 

𝑥𝑥𝑖𝑖 − 𝜖𝜖 ≤ 𝑥𝑥𝑖𝑖′ ≤ 𝑥𝑥𝑖𝑖 + 𝜖𝜖 
4. Encode Post-Condition Ψ : e.g., label 0 is 

more likely than label 1: Ψ = 𝑜𝑜0 > 𝑜𝑜1 by 
finding a counter example. 

min 𝑜𝑜0 − 𝑜𝑜1 
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Finally, we get this MILP instance: 
min 𝑜𝑜0 − 𝑜𝑜1. 
Affine and ReLU encodings 
𝑙𝑙𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗

(𝑝𝑝) ≤ 𝑢𝑢𝑖𝑖 and 𝑥𝑥𝑖𝑖 − 𝜖𝜖 ≤ 𝑥𝑥𝑖𝑖′ ≤ 𝑥𝑥𝑖𝑖 + 𝜖𝜖 

𝑎𝑎𝑗𝑗 ∈ {0,1}. 
(See example slide 12) 

 
Lecture 6: Zonotope Convex relaxation 
Incomplete method, more precise than box 
relaxation. Creating abstract neurons: 
𝑥𝑥�𝑗𝑗 = 𝑎𝑎0

𝑗𝑗 + ∑ 𝑎𝑎𝑖𝑖
𝑗𝑗𝜖𝜖𝑖𝑖𝑖𝑖  for every neuron 𝑗𝑗 ∈ {1, … ,𝑑𝑑} 

where 𝜖𝜖 ∈ [−1,1] is noise and 𝑎𝑎 is its magnitude. 
Sharing the same parameters results in more 
complex and precise shapes than the box. 
 
 
 
 
 
 
 
 

Example for 𝑑𝑑 = 2 and 𝑘𝑘 = 3. 
 
Zonotope Affine Transformer: 
Multiply by a const 𝐶𝐶: 𝑥𝑥�𝑗𝑗 × 𝐶𝐶 = �𝑎𝑎0

𝑗𝑗 + ∑ 𝑎𝑎𝑖𝑖
𝑗𝑗𝜖𝜖𝑖𝑖𝑖𝑖 � ×

𝐶𝐶 = 𝑎𝑎0
𝑗𝑗 × 𝐶𝐶 + ∑ 𝐶𝐶 × 𝑎𝑎𝑖𝑖

𝑗𝑗𝜖𝜖𝑖𝑖𝑖𝑖  
Add 2 neurons: 𝑥𝑥�𝑝𝑝 + 𝑥𝑥�𝑞𝑞 = �𝑎𝑎0

𝑝𝑝 + ∑ 𝑎𝑎𝑖𝑖
𝑝𝑝𝜖𝜖𝑖𝑖𝑖𝑖 � + �𝑎𝑎0

𝑞𝑞 +
∑ 𝑎𝑎𝑖𝑖

𝑞𝑞𝜖𝜖𝑖𝑖𝑖𝑖 � = �𝑎𝑎0
𝑝𝑝 + 𝑎𝑎0

𝑞𝑞� + ∑ �𝑎𝑎𝑖𝑖
𝑝𝑝 + 𝑎𝑎𝑖𝑖

𝑞𝑞�𝜖𝜖𝑖𝑖𝑖𝑖  
 
Zonotope ReLU Transformer: 

Given 𝑥𝑥� = 𝑎𝑎0 + ∑ 𝑎𝑎𝑖𝑖𝜖𝜖𝑖𝑖𝑖𝑖  calculate 𝑦𝑦� = max(0, 𝑥𝑥�) 
1. Compute 𝑙𝑙𝑥𝑥 and 𝑢𝑢𝑥𝑥 by choosing 𝜖𝜖 ∈ {0,1} 

depending on the sign of 𝑎𝑎. 
2. Check if the boundaries are on one side of 

the plane 
a. 𝑢𝑢𝑥𝑥 ≤ 0 ⇒ 𝑦𝑦� = 0 
b. 𝑙𝑙𝑥𝑥 > 0 ⇒ 𝑦𝑦� = 𝑥𝑥� 
c. Otherwise, cross boundary case. 

3. In the case of c., compute a zonotope that 
encloses ReLU: 
𝑦𝑦1(𝑥𝑥�) = 𝜆𝜆𝑥𝑥� ≤ 𝑦𝑦(𝑥𝑥�) ≤ 𝑦𝑦2(𝑥𝑥�) = 𝜆𝜆𝑥𝑥� − 𝜆𝜆𝑙𝑙𝑥𝑥 where 𝜆𝜆 =
𝑢𝑢𝑚𝑚

𝑢𝑢𝑚𝑚−𝑙𝑙𝑚𝑚
. 

We can an equality by introducing 𝑐𝑐 ∈ [0,1], 
𝑦𝑦(𝑥𝑥�) = 𝜆𝜆𝑥𝑥� − 𝑐𝑐𝜆𝜆𝑙𝑙𝑥𝑥 or 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛 ∈ [−1,1], 𝑐𝑐 = 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛−1

2
. 

Finally, 𝑦𝑦(𝑥𝑥�) = 𝜆𝜆𝑥𝑥� − 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛
𝜆𝜆𝑙𝑙𝑚𝑚
2
− 𝜆𝜆𝑙𝑙𝑚𝑚

2
 

𝑦𝑦 �𝑎𝑎0 + � 𝑎𝑎𝑖𝑖𝜖𝜖𝑖𝑖
𝑘𝑘

𝑖𝑖=1
� = 

𝜆𝜆𝑎𝑎0 + � 𝜆𝜆𝑎𝑎𝑖𝑖𝜖𝜖𝑖𝑖
𝑘𝑘

𝑖𝑖=1
− 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛

𝜆𝜆𝑙𝑙𝑥𝑥
2
−
𝜆𝜆𝑙𝑙𝑥𝑥
2

= 

𝑜𝑜0 + � 𝑜𝑜𝑖𝑖𝜖𝜖𝑖𝑖
𝑘𝑘+1

𝑖𝑖=1
 

Where 𝑜𝑜0 = 𝜆𝜆𝑎𝑎0 −
𝜆𝜆𝑙𝑙𝑚𝑚
2

, 𝑜𝑜𝑖𝑖 = 𝜆𝜆𝑎𝑎𝑖𝑖 and 𝑜𝑜𝑘𝑘+1 = −𝜆𝜆𝑙𝑙𝑚𝑚
2

 

 
 
 
 
 
 
 
Zonotope is precise on affine (≠Box) and loses 
precision on ReLU. 
 

Lecture 7: DeepPoly Relaxation 
For each 𝑥𝑥𝑖𝑖 we keep interval constraint 𝑙𝑙𝑖𝑖 and 𝑢𝑢𝑖𝑖. 
And two relational constraints 𝑥𝑥𝑖𝑖 ∈ [𝑎𝑎𝑖𝑖≤,𝑎𝑎𝑖𝑖≥] 
where 𝑎𝑎𝑖𝑖 = ∑ 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑣𝑣. 
 
How to capture ReLU activation? 
𝑥𝑥𝑗𝑗 = max(0, 𝑥𝑥𝑖𝑖): 

• 𝑢𝑢𝑖𝑖 ≤ 0 ⇒ 𝑎𝑎𝑗𝑗≤ = 𝑎𝑎𝑗𝑗≥ = 0, 𝑙𝑙𝑗𝑗 = 𝑢𝑢𝑗𝑗 = 0. 
• 𝑢𝑢𝑖𝑖 ≥ 0 ⇒ 𝑎𝑎𝑗𝑗≤ = 𝑎𝑎𝑗𝑗≥ = 𝑥𝑥𝑖𝑖 , 𝑙𝑙𝑗𝑗 = 𝑙𝑙𝑖𝑖 ,𝑢𝑢𝑗𝑗 = 𝑢𝑢𝑖𝑖 
• 𝑙𝑙𝑖𝑖 < 0 and 𝑢𝑢𝑖𝑖 > 0: crossing ReLU 

 

 
The shape of DeepPoly is chosen depending on 
area (heuristic). 
Example: 

 

https://files.sri.inf.ethz.ch/website/teaching/riai2020/materials/lectures/LECTURE5_VERIFY.pdf
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Backsubstitution: we do not use 𝑙𝑙𝑖𝑖 and 𝑢𝑢𝑖𝑖 to 
calculate 𝑙𝑙𝑗𝑗 and 𝑢𝑢𝑗𝑗. We use all the previous 
constraint instead (e.g., 𝑥𝑥3 ≥ 𝑥𝑥1 + 𝑥𝑥2, etc.). 
 
Soundness: 𝐹𝐹�𝛾𝛾(𝑧𝑧)� = 𝐹𝐹(𝑥𝑥) ⊆ 𝛾𝛾 �𝐹𝐹#(𝑧𝑧)� 

Exactness: 𝐹𝐹�𝛾𝛾(𝑧𝑧)� = 𝛾𝛾 �𝐹𝐹#(𝑧𝑧)� 

Optimality: ∀𝑧𝑧,∀𝐹𝐹′. 𝛾𝛾�𝐹𝐹′(𝑧𝑧)� ⊄ 𝛾𝛾�𝐹𝐹best(𝑧𝑧)� 
𝛾𝛾(𝑧𝑧): the concrete values of an abstract element. 
𝐹𝐹: concrete transformer. 
𝐹𝐹#: abstract transformer. 
 
Lecture 8: Certified Defenses 
Find a point 𝑧𝑧 in the output shape that 
maximizes the loss. 
Find   𝜃𝜃 
Minimize  𝜌𝜌(𝜃𝜃) 
Where   𝜌𝜌(𝜃𝜃) =

𝐸𝐸(𝑥𝑥,𝑦𝑦)∼𝐷𝐷 � max
𝑧𝑧∈γ�NN#�S(x)��

𝐿𝐿(𝜃𝜃, 𝑥𝑥′,𝑦𝑦)� 

 
𝛾𝛾 is applied to concretize the values of the shape. 
Loss function: 𝐿𝐿(𝑧𝑧,𝑦𝑦) = max

𝑞𝑞≠𝑦𝑦
�𝑧𝑧𝑞𝑞 − 𝑧𝑧𝑦𝑦� 

Using Box relaxation scales to large networks but 
introduces a lot of infeasible points. 
More complex relaxations do not lead to better 
results. 
 
Adversarial Training: Good accuracy, Easier 
optimization. 
Certified Defense: Good verifiability. 
How to combine both? 

COLT: find 𝑥𝑥1 ∈ 𝑆𝑆1 (the abstract output of the 
first layer) that maximizes the loss function (the 
worst case) and find 𝜃𝜃2, … , 𝜃𝜃𝑙𝑙 that minimize this 
loss. Then we push 𝑆𝑆1, freeze ℎ2 and redo the 
previous steps. 

 
 
Lecture 9: Certified Robustness to 
Geometric Transformations 
Beyond 𝐿𝐿𝑝𝑝 perturbations, e.g., image geometric 
transformations: rotation, translation, scaling. 
Bijective function 𝑇𝑇𝜅𝜅:ℝ2 → ℝ2 
 
Computing pixel values after 
transformation 

1. Compute the preimage of 
(𝑥𝑥,𝑦𝑦) 

2. Interpolate the resulting 
coordinate: 𝐼𝐼 

 
𝐼𝐼𝜅𝜅(𝑥𝑥,𝑦𝑦) = 𝐼𝐼 ∘ 𝑇𝑇𝜅𝜅−1(𝑥𝑥,𝑦𝑦):ℝ2 → ℝ is a function that 
takes coordinates in the resulting image and 
return the pixel value. 
 
Certifying geometric robustness 
Given an original image 𝑂𝑂, make sure that the 
network correctly classifies all the 𝑇𝑇𝜅𝜅(𝑂𝑂). 

Example: 𝑅𝑅Φ(𝑂𝑂) would be the region of all 
rotated 𝑂𝑂 for Φ ∈ [−30,30]. 
 
We will be interested in a convex relaxation 
𝐶𝐶�𝑅𝑅Φ(𝑂𝑂)�. How to represent it? 
Find a tight and sound lower and upper bound 
constraint for each pixel. 

𝒘𝒘𝑙𝑙
𝑇𝑇𝜿𝜿 + 𝑜𝑜𝑙𝑙 ≤ 𝐼𝐼𝜅𝜅(𝑥𝑥,𝑦𝑦) ≤ 𝒘𝒘𝑢𝑢

𝑇𝑇𝜿𝜿 + 𝑜𝑜𝑢𝑢 
For all 𝜿𝜿 in parameter space 𝐷𝐷. In the rotation 
example, 𝜿𝜿 is the rotation angle. 
 
Calculate tightness and approximate it for 𝑁𝑁 
samples of 𝜿𝜿: 
Step 1: 

𝐿𝐿(𝑤𝑤𝑙𝑙 ,𝑜𝑜𝑙𝑙) = ��𝐼𝐼𝜅𝜅(𝑥𝑥,𝑦𝑦) − �𝒘𝒘𝑙𝑙
𝑇𝑇𝜿𝜿 + 𝑜𝑜𝑙𝑙�� 𝑑𝑑𝜿𝜿

≈
1
𝑁𝑁
� �𝐼𝐼𝜅𝜅𝑖𝑖 − �𝒘𝒘𝑙𝑙

𝑇𝑇𝜿𝜿𝑖𝑖 + 𝑜𝑜𝑙𝑙��
𝑁𝑁

𝑖𝑖=1
 

𝑈𝑈(𝑤𝑤𝑢𝑢, 𝑜𝑜𝑢𝑢) = ��(𝒘𝒘𝑢𝑢
𝑇𝑇𝜿𝜿 + 𝑜𝑜𝑢𝑢) − 𝐼𝐼𝜅𝜅(𝑥𝑥,𝑦𝑦)�𝑑𝑑𝜿𝜿

≈
1
𝑁𝑁
� ��𝒘𝒘𝑢𝑢

𝑇𝑇𝜿𝜿𝑖𝑖 + 𝑜𝑜𝑢𝑢� − 𝐼𝐼𝜅𝜅𝑖𝑖�
𝑁𝑁

𝑖𝑖=1
 

Step 2: 
𝒘𝒘𝑙𝑙
𝑇𝑇𝜿𝜿𝑖𝑖 + 𝑜𝑜𝑙𝑙 ≤ 𝐼𝐼𝜅𝜅𝑖𝑖(𝑥𝑥, 𝑦𝑦) ≤ 𝒘𝒘𝑢𝑢

𝑇𝑇𝜿𝜿𝑖𝑖 + 𝑜𝑜𝑢𝑢,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁} 
 
This can be sound for a finite number of samples 
but not for all the values of 𝜅𝜅. So, we must shift 
the lower (upper) bound by −𝛿𝛿𝑙𝑙 (+𝛿𝛿𝑢𝑢) to make 
the constraint cover all the possible values. 

�𝒘𝒘�𝑙𝑙𝑇𝑇𝜿𝜿 + 𝑜𝑜�𝑙𝑙� − 𝐼𝐼𝜅𝜅(𝑥𝑥,𝑦𝑦) ≤ 𝛿𝛿𝑙𝑙 ,∀𝜅𝜅 ∈ 𝐷𝐷 
Where 𝑤𝑤�𝑙𝑙 = 𝑤𝑤𝑙𝑙 and 𝑜𝑜𝑙𝑙 = 𝑜𝑜�𝑙𝑙 − 𝛿𝛿𝑙𝑙 
To find 𝛿𝛿𝑙𝑙, we calculate an upper bound of 
𝑓𝑓(𝜅𝜅) = �𝒘𝒘�𝑙𝑙𝑇𝑇𝜿𝜿 + 𝑜𝑜�𝑙𝑙� − 𝐼𝐼𝜅𝜅(𝑥𝑥,𝑦𝑦). 
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Option 1 
Run box propagation (or other relaxations) to 
bound 𝑓𝑓 in [𝑢𝑢, 𝑙𝑙]. So, 𝑓𝑓(𝜅𝜅) ≤ 𝑢𝑢,∀𝜅𝜅 ∈ 𝐷𝐷. 
Option 2 
Apply mean-value theorem 
𝑓𝑓(𝜿𝜿) = 𝑓𝑓(𝜿𝜿𝑐𝑐) + ∇𝑓𝑓(𝜿𝜿′)𝑇𝑇(𝜿𝜿 − 𝜿𝜿𝑐𝑐) 
≤ 𝑓𝑓(𝜿𝜿𝑐𝑐) + |𝑳𝑳|𝑇𝑇(𝜿𝜿 − 𝜿𝜿𝑐𝑐) 

≤ 𝑓𝑓 �
1
2

(𝒉𝒉𝑢𝑢 + 𝒉𝒉𝑙𝑙)� +
1
2

|𝑳𝑳|𝑇𝑇(𝒉𝒉𝑢𝑢 − 𝒉𝒉𝑙𝑙) 

Where |𝜕𝜕𝑖𝑖𝑓𝑓(𝜅𝜅𝑖𝑖)| ≤ |𝐿𝐿𝑖𝑖|,∀𝜅𝜅′ ∈ 𝐷𝐷 (by box prop.) 
𝜿𝜿𝑐𝑐 = 1

2
(𝒉𝒉𝑢𝑢 + 𝒉𝒉𝑙𝑙) is the center point of 𝐷𝐷 =

[𝒉𝒉𝑙𝑙 ,𝒉𝒉𝑢𝑢]. 
 
Lecture 10: Visualization 
Feature Visualization by Optimization 
Find 𝑥𝑥 
Maximize score(𝑥𝑥) − ∑𝜆𝜆𝑖𝑖𝑅𝑅𝑖𝑖(𝑥𝑥) 
Where score(𝑥𝑥) = mean(layer𝑛𝑛[𝑥𝑥, 𝑦𝑦, 𝑧𝑧]) 
 
Gradient Based Feature Attribution 
Calculate 𝜕𝜕𝑙𝑙𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑡𝑡(𝑥𝑥)

𝜕𝜕𝑥𝑥
: the contribution of each pixel 

to the classification result 
 
Shapley Values: calculate the contribution of 
each feature 𝑖𝑖. 

𝐶𝐶𝑖𝑖 = �
|𝑆𝑆|! (|𝑃𝑃| − |𝑆𝑆| − 1)!

|𝑃𝑃|!
[𝑓𝑓(𝑆𝑆⋃{𝑖𝑖}) − 𝑓𝑓(𝑆𝑆)]

𝑆𝑆⊆𝑃𝑃∖{𝑖𝑖}

 

Where 𝑃𝑃 is the set of features. 
 
Lecture 11: Combining Logic and Deep 
Learning 

Adversarial examples are a special case of a 
query. 
Declaratively: impose constraints (kind of logic) 
on queried inputs.  
Operationally: a way to perform queries to the 
network with these constraints. 
 
Querying the network 
Use standard logic: quantifiers, functions, 
variables, etc. 

Φ = �𝑁𝑁𝑁𝑁(𝑖𝑖)[𝑗𝑗] < 𝑁𝑁𝑁𝑁(𝑖𝑖)[9]
𝑗𝑗

 

∧ ‖𝑖𝑖 − deer‖∞ < 25 
∧ ‖𝑖𝑖 − deer‖∞ > 5 

Goal: find 𝑖𝑖 that satisfies Φ. 
 
Solve as optimization: find a translation 𝑇𝑇 such 
that 𝑇𝑇(Φ) is a differentiable loss function. So, if 
𝑥𝑥 satisfies Φ, then 𝑇𝑇(Φ)(𝑥𝑥) = 0. 
Examples: 

• 𝑇𝑇(𝑡𝑡1 ≤ 𝑡𝑡2) = max(0, 𝑡𝑡1 − 𝑡𝑡2). 
• 𝑇𝑇(𝑡𝑡1 ≠ 𝑡𝑡2) = [𝑡𝑡1 = 𝑡𝑡2]. 
• 𝑇𝑇(𝑡𝑡1 = 𝑡𝑡2) = 𝑇𝑇(𝑡𝑡1 ≤ 𝑡𝑡2 ∧ 𝑡𝑡2 ≤ 𝑡𝑡1) 
• 𝑇𝑇(𝜙𝜙 ∧ 𝜓𝜓) = 𝑇𝑇(𝜙𝜙) + 𝑇𝑇(𝜓𝜓). 
• 𝑇𝑇(𝜙𝜙 ∨ 𝜓𝜓) = 𝑇𝑇(𝜙𝜙) ⋅ 𝑇𝑇(𝜓𝜓). 

 
Training the Network with Background 
Knowledge 
Supervised Learning with constraints 

∀𝑧𝑧 ∈ 𝐿𝐿∞(𝑥𝑥, 𝜖𝜖),𝑦𝑦 = car ⇒ 𝑁𝑁𝑁𝑁(𝑧𝑧)[truck]
> 𝑁𝑁𝑁𝑁(𝑧𝑧)[dog] + 𝛿𝛿 

This slightly decreases the network accuracy but 
significantly increases the constraint accuracy. 

 
Semi-Supervised Training 

1. Train a base classifier Θ� on labeled data. 
2. Infer the labels with Θ� for unlabeled data. 
3. Use adversarial training to get robust Θ. 

 
Problem Statement 
Find 𝜃𝜃 
Maximize 𝜌𝜌(𝜃𝜃) 
Where 𝜌𝜌(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝐷𝐷[∀𝑧𝑧,Φ(𝑧𝑧, 𝑠𝑠,𝜃𝜃)] 
 
Step 1: Rephrasing 
Find 𝜃𝜃 
Minimize 𝜌𝜌(𝜃𝜃) 
Where 𝜌𝜌(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝐷𝐷 �max

z
¬Φ(𝑧𝑧, 𝑠𝑠,𝜃𝜃)� 

⇒ Find parameters such that the maximum 
violation is minimized. 
 
Step 2: Translation 
Find 𝜃𝜃 
Minimize 𝜌𝜌(𝜃𝜃) 
Where 𝜌𝜌(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝐷𝐷[𝑇𝑇(Φ)(𝑧𝑧worst, 𝑠𝑠, 𝜃𝜃)] 
And 𝑧𝑧worst = arg min

z
�𝑇𝑇(¬Φ)(𝑧𝑧, 𝑠𝑠,𝜃𝜃)� 

⇒ Find the worst-case counter example 𝑧𝑧worst 
and minimize the violation at this point. 
 
Example 
Φ(𝑧𝑧, 𝑥𝑥,𝜃𝜃) = ‖𝑥𝑥 − 𝑧𝑧‖∞ ≤ 𝜖𝜖 ⇒ 𝑁𝑁𝑁𝑁𝜃𝜃(𝑧𝑧)[3] > 𝛿𝛿 
Φ(𝑧𝑧, 𝑥𝑥,𝜃𝜃) = ¬‖𝑥𝑥 − 𝑧𝑧‖∞ ≤ 𝜖𝜖 ∨ 𝑁𝑁𝑁𝑁𝜃𝜃(𝑧𝑧)[3] > 𝛿𝛿 
¬Φ(𝑧𝑧, 𝑥𝑥,𝜃𝜃) = ‖𝑥𝑥 − 𝑧𝑧‖∞ ≤ 𝜖𝜖 ∧ 𝑁𝑁𝑁𝑁𝜃𝜃(𝑧𝑧)[3] ≤ 𝛿𝛿 
𝐿𝐿(𝑧𝑧, 𝑥𝑥,𝜃𝜃) = max(0, ‖𝑥𝑥 − 𝑧𝑧‖∞ − 𝜖𝜖)

+ max(0,𝑁𝑁𝑁𝑁𝜃𝜃(𝑧𝑧)[3] − 𝛿𝛿) 



Mokhles Bouzaien ETH Zürich 

Solve max(0,𝑁𝑁𝑁𝑁𝜃𝜃(𝑧𝑧)[3] − 𝛿𝛿) using PGD while 
projecting to 𝐿𝐿∞(𝑥𝑥, 𝜖𝜖) ball. 
 
Lecture 12: Randomized Smoothing for 
Robustness 
From an existing classifier 𝑓𝑓:ℝ𝑑𝑑 → 𝒴𝒴, construct 
a classifier 𝑖𝑖 having statistical robustness 
guarantees. 

𝑖𝑖(𝑥𝑥) = arg max
c∈𝒴𝒴

ℙ𝜖𝜖(𝑓𝑓(𝑥𝑥 + 𝜖𝜖) = 𝑐𝑐) 

e.g., what is the most likely label of 𝑥𝑥 + 𝜖𝜖 where 
𝜖𝜖~𝒩𝒩(0,𝜎𝜎2𝟏𝟏).  

 
Robustness Guarantee 

𝑖𝑖(𝑥𝑥 + 𝛿𝛿) = 𝑐𝑐𝐴𝐴,∀‖𝛿𝛿‖2 < 𝑅𝑅 
Where the certification radius 

𝑅𝑅 =
𝜎𝜎
2
�Φ−1 �𝑝𝑝𝐴𝐴� − Φ−1(𝑝𝑝𝐵𝐵���)� 

and Φ−1 is the inverse of the standard Gaussian 
CDF. 
FYI: ℙ(𝑥𝑥 ≤ 𝑣𝑣) = 𝑝𝑝 ⇒ Φ−1(𝑝𝑝) = 𝑣𝑣. 
 
Certified Accuracy: matching the test sample 
label AND 𝑅𝑅 ≥ 𝑇𝑇 where 𝑇𝑇 is a target radius. 
 
 
 
 
 

Certification 

 
When noise 𝜎𝜎 is increased, the standard accuracy 
decreases but the certified robust radius increases 
 
Inference 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


