Reliable and Interpretable Artificial Intelligence

Instructor: Prof. Dr. Martin Vechev

Lecture 1: Introduction

Motivation: adding perturbation to the input can change the prediction result, which can lead to dramatic results \rightarrow mastering attacking and defending deep neural networks.

Mathematical Certification: We can test all possible perturbed inputs by summarizing them using Symbolic Images.

Tradeoff between Provability and Accuracy.

Lecture 2: Adversarial Attacks I

Adversarial examples are inputs to machine learning models that an attacker has intentionally designed to cause the model to make a mistake.

Examples: geometric (rotation), reinforcement learning (\rightarrow wrong decisions), NLP (add adversarial text), audio processing (add noise).

Robustness: returning correct output on all inputs (the input space is too large!) Local Robustness: returning correct output on inputs similar to the training set.

Generating Adversarial Examples

Targeted Attack: aims to misclassify the input to a specific label $(f(x + \eta) = t)$.

Untargeted Attack: aims to misclassify the input to any wrong label $(f(x + \eta) \neq f(x))$.

Targeted Fast Gradient Sign Attack

1. Compute perturbation $\eta = \epsilon . sign(\nabla_x L_t(x))$ where $\nabla_x L_t(x) = \left(\frac{\partial L_t}{\partial x_1}, ...\right)$ 2. Perturb the input: $x' = x - \eta$ 3. Check if f(x') = t

Untargeted FGSM

- 1. Compute perturbation $\eta = \epsilon. sign(\nabla_x L_s(x))$
- 2. Perturb the input: $x' = x + \eta$
- 3. Check if $f(x') \neq s$

Similarity can be captured using l_p norm: $x \sim x' iff ||x - x'||_p < \epsilon$ We need to minimize $||\eta||_p$ to get similar input: Find η Minimize $||\eta||_p$ Such that $f(x + \eta) = t$ $x + \eta \in [0,1]^n$

 $\begin{array}{ll} \text{To simplify, we replace hard objective by soft} \\ \text{objective: if } obj_t(x+\eta) \leq 0 \text{ then } f(x+\eta) = t. \\ \text{Find} & \eta \\ \text{Minimize} & \|\eta\|_p + c. \, obj_t(x+\eta) \\ \text{Such that} & x+\eta \in [0,1]^n \end{array}$

Problem? The $\|\eta\|_{\infty}$ is converging slowly because it updates one dimension at once.

Replace $\|\eta\|_{\infty}$ with proxy function:

$$\sum_{i} \max(0, |\eta_i| - \tau)$$

 τ is decreased with some factor at each iteration until one (or more) η_i is greater than τ . In that case $\nabla_{\eta} L(\eta) = (0,1,1)$.

We stop after k iterations (e.g., $\tau_k = 1/256$), so we have $\|\eta\|_{\infty} \leq \tau_k$.

Lecture 3: Adversarial Attacks II

How to satisfy the constraint $x + \eta \in [0,1]^n \Leftrightarrow \eta_i \in [-x_i, 1 - x_i]$?

Projected Gradient Descent: minimize a function subject to constraint \rightarrow move in the direction of negative gradient, then project onto the constraint set.

We start by choosing a point x correctly classified inside (x_{orig}, ϵ) and for each step:

- 1. $x' = x + 0.1 \times sign(\nabla_x L(x))$
- 2. If $x' \notin (x_{orig}, \epsilon)$ then project it to the feasible set $x'' = project(x', (x_{orig}, \epsilon))$
- 3. $x \leftarrow x''$
- 4. Repeat until x is misclassified.

In that case, x is an <u>adversarial example</u>.

Differencing Networks: given two NNs f_1 and f_2 trained to learn the same function $f^*: X \to C$, find $x \in X$ such that $f_1(x) \neq f_2(x)$. $obj_t(x) = f_1(x)_t - f_2(x)_t$

Pseudocode: while class $(f_1(x)) = class(f_2(x))$: $x = x + \epsilon \times \frac{\partial obj_t(x)}{\partial x}$ return x

Making f_1 (evtl. f_2) more (evtl. less) confident about t.

Lecture 4a: Adversarial Defenses

Can we avoid adversarial examples? Yes, by including them during training.

Adversarial accuracy: test points correctly classified AND the network is robust around those points (no adversarial examples).

Defense as Optimization Problem: try to find x' around x (in $S(x) = \{x', ||x - x'|| < \epsilon\}$) that achieves high loss and minimize this high loss. More formally:

Find θ Minimize $\rho(\theta)$ Where $\rho(\theta) = E_{(x,y)\sim D} \left[\max_{x'\in S(x)} L(\theta, x', y) \right]$

Algorithm:

- 1. Select a mini-batch $B \subset D$
- 2. Compute B_{max} by applying PGD

$$\begin{aligned} x_{max} &= \arg \max_{x' \in S(x)} L(\theta, x', y) \\ 3. & \text{Solve outer problem} \\ \theta &\leftarrow \theta - \frac{1}{|B_{max}|} \sum_{(x_{max}, y) \in B_{max}} \nabla_{\theta} L(\theta, x_{max}, y) \\ 4. & \text{Repeat until reaching stopping criteria} \end{aligned}$$

Lecture 4b: Mathematical Certification

of Neural Networks

Goal: an automated verifier to prove properties of realistic networks.

We want to prove that $\forall i \in I, i \models \Phi \Rightarrow N(i) \models \Psi$ where N is the neural network, Φ is a property over inputs (pre-condition) and Ψ is a property over outputs (post-condition).

- 1. Define Φ formally.
- 2. Verify that Φ satisfies Ψ .

Certification Methods

<u>Sound method</u>: able to always catch violated properties (certification method).

<u>Unsound method</u>: could state a violated property as satisfied.

<u>Complete method</u>: able to prove that a property holds when it actually holds.

<u>Incomplete method</u>: no guarantee to prove a property that holds.

 \rightarrow tradeoff between scalability and completeness.

Incomplete Methods

1. Compute bounds by propagating Φ (which can be a region for example).

2. Certify the property, i.e., every point in Ψ satisfies the property (e.g., classified as 3).

Box Abstract Transformers (applying operators $+^{\#}, -^{\#}, ReLU^{\#}, \lambda^{\#}$ to vector intervals [a, b]): not exact because it gives an over-approximation. It can succeed in verifying robustness or not (when the output boxes overlap).

Lecture 5: Certification with Complete Methods

MILP Problem Definition $\min \sum_i c_i x_i$:objective

-	5
$\sum_{ij} a_{ij} x_j \le b_i$:	constraints
$l_j \leq x_j \leq u_i$:	bounds on continuous x_j
$x_i \in \mathbb{Z}$:	some x_j are integers

1. Encode Affine Layer: y = Wx + b2. Encode ReLU Layer as MILP: $y = \max(0, x)$ $y \le x - l \times (1 - a)$ $y \ge x$ $y \le u \times a$ $y \ge 0$ $a \in \{0,1\}$ Where *l* and *u* are lower and upper bounds of the

input x already calculated.

- 3. Encode Pre-Condition $\Phi = B_{\infty}(x)_{\epsilon}$ $x_i - \epsilon \le x'_i \le x_i + \epsilon$
- 4. Encode Post-Condition Ψ : e.g., label 0 is more likely than label 1: $\Psi = o_0 > o_1$ by finding a counter example.

 $\min o_0 - o_1$

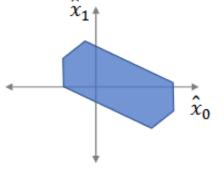
Finally, we get this MILP instance: min $o_0 - o_1$. Affine and ReLU encodings $l_j \leq x_j^{(p)} \leq u_i$ and $x_i - \epsilon \leq x'_i \leq x_i + \epsilon$ $a_j \in \{0,1\}$.

(See $\underline{\text{example}}$ slide 12)

Lecture 6: Zonotope Convex relaxation

Incomplete method, more precise than box relaxation. Creating abstract neurons:

 $\hat{x}_j = a_0^j + \sum_i a_i^j \epsilon_i$ for every neuron $j \in \{1, ..., d\}$ where $\epsilon \in [-1,1]$ is noise and a is its magnitude. Sharing the same parameters results in more complex and precise shapes than the box.



Example for d = 2 and k = 3.

Zonotope Affine Transformer: Multiply by a const $C: \hat{x}_j \times C = (a_0^j + \sum_i a_i^j \epsilon_i) \times C = a_0^j \times C + \sum_i C \times a_i^j \epsilon_i$ Add 2 neurons: $\hat{x}_p + \hat{x}_q = (a_0^p + \sum_i a_i^p \epsilon_i) + (a_0^q + \sum_i a_i^q \epsilon_i) = (a_0^p + a_0^q) + \sum_i (a_i^p + a_i^q) \epsilon_i$

Zonotope ReLU Transformer:

Given $\hat{x} = a_0 + \sum_i a_i \epsilon_i$ calculate $\hat{y} = \max(0, \hat{x})$ 1. Compute l_x and u_x by choosing $\epsilon \in \{0,1\}$ depending on the sign of a.

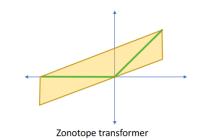
2. Check if the boundaries are on one side of the plane

- a. $u_x \le 0 \Rightarrow \hat{y} = 0$ b. $l_x > 0 \Rightarrow \hat{y} = \hat{x}$
- c. Otherwise, cross boundary case.

3. In the case of c., compute a zonotope that encloses ReLU:

$$y_1(\hat{x}) = \lambda \hat{x} \le y(\hat{x}) \le y_2(\hat{x}) = \lambda \hat{x} - \lambda l_x \text{ where } \lambda = \frac{u_x}{u_x - l_x}.$$

We can an equality by introducing $c \in [0,1]$, $y(\hat{x}) = \lambda \hat{x} - c\lambda l_x$ or $\epsilon_{new} \in [-1,1]$, $c = \frac{\epsilon_{new}-1}{2}$. Finally, $y(\hat{x}) = \lambda \hat{x} - \epsilon_{new} \frac{\lambda l_x}{2} - \frac{\lambda l_x}{2}$ $y\left(a_0 + \sum_{i=1}^k a_i \epsilon_i\right) =$ $\lambda a_0 + \sum_{i=1}^k \lambda a_i \epsilon_i - \epsilon_{new} \frac{\lambda l_x}{2} - \frac{\lambda l_x}{2} =$ $b_0 + \sum_{i=1}^{k+1} b_i \epsilon_i$ Where $b_0 = \lambda a_0 - \frac{\lambda l_x}{2}$, $b_i = \lambda a_i$ and $b_{k+1} = -\frac{\lambda l_x}{2}$



Zonotope is precise on affine $(\neq Box)$ and loses precision on ReLU.

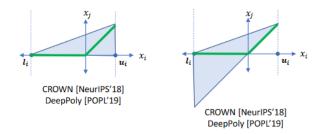
Lecture 7: DeepPoly Relaxation

For each x_i we keep interval constraint l_i and u_i . And two relational constraints $x_i \in [a_i^{\leq}, a_i^{\geq}]$ where $a_i = \sum_j w_j x_j + v$.

How to capture ReLU activation?

 $x_j = \max(0, x_i):$

- $u_i \leq 0 \Rightarrow a_j^{\leq} = a_j^{\geq} = 0, l_j = u_j = 0.$
- $u_i \ge 0 \Rightarrow a_j^{\le} = a_j^{\ge} = x_i, l_j = l_i, u_j = u_i$
- $l_i < 0$ and $u_i > 0$: crossing ReLU



The shape of DeepPoly is chosen depending on area (heuristic).

Example:



Backsubstitution: we do not use l_i and u_i to calculate l_j and u_j . We use all the previous constraint instead (e.g., $x_3 \ge x_1 + x_2$, etc.).

Soundness: $F(\gamma(z)) = F(x) \subseteq \gamma(F^{\#}(z))$ Exactness: $F(\gamma(z)) = \gamma(F^{\#}(z))$ Optimality: $\forall z, \forall F'. \gamma(F'(z)) \notin \gamma(F_{\text{best}}(z))$ $\gamma(z)$: the concrete values of an abstract element. F: concrete transformer. $F^{\#}$: abstract transformer.

Lecture 8: Certified Defenses

Find a point z in the output shape that maximizes the loss.

Find θ Minimize $\rho(\theta)$ Where $\rho(\theta) =$ $E_{(x,y)\sim D} \left[\max_{z \in \gamma(NN^{\#}(S(x)))} L(\theta, x', y) \right]$

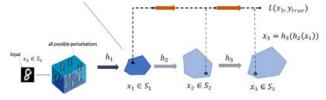
 γ is applied to concretize the values of the shape. Loss function: $L(z, y) = \max_{q \neq y} (z_q - z_y)$

Using Box relaxation scales to large networks but introduces a lot of infeasible points.

More complex relaxations do not lead to better results.

Adversarial Training: Good accuracy, Easier optimization.

Certified Defense: Good verifiability. How to combine both? COLT: find $x_1 \in S_1$ (the abstract output of the first layer) that maximizes the loss function (the worst case) and find $\theta_2, \ldots, \theta_l$ that minimize this loss. Then we push S_1 , freeze h_2 and redo the previous steps.



Lecture 9: Certified Robustness to Geometric Transformations

Beyond L_p perturbations, e.g., image geometric transformations: rotation, translation, scaling. Bijective function $T_{\kappa}: \mathbb{R}^2 \to \mathbb{R}^2$

Compu	ting pixel values after	(x_1, y_2) (x_2, y_2)
transfo	ormation	(x,y)
1.	Compute the preimage of	
	(x,y)	(x_1, y_1) (x_2, y_1)
2.	Interpolate the resulting	● <mark>_</mark> =0 +0 +
	coordinate: I	• +•

 $I_{\kappa}(x,y) = I \circ T_{\kappa}^{-1}(x,y) \colon \mathbb{R}^2 \to \mathbb{R}$ is a function that takes coordinates in the resulting image and return the pixel value.

Certifying geometric robustness

Given an original image O, make sure that the network correctly classifies all the $T_{\kappa}(O)$.

Example: $R_{\Phi}(O)$ would be the region of all rotated O for $\Phi \in [-30,30]$.

We will be interested in a convex relaxation $C(R_{\Phi}(O))$. How to represent it?

Find a <u>tight</u> and sound lower and upper bound constraint for each pixel.

$$\boldsymbol{w}_l^T \boldsymbol{\kappa} + b_l \leq I_{\kappa}(x, y) \leq \boldsymbol{w}_u^T \boldsymbol{\kappa} + b_u$$

For all $\boldsymbol{\kappa}$ in parameter space D. In the rotation example, $\boldsymbol{\kappa}$ is the rotation angle.

Calculate tightness and approximate it for N samples of $\pmb{\kappa}$:

$$L(w_{l}, b_{l}) = \int \left(I_{\kappa}(x, y) - \left(\boldsymbol{w}_{l}^{T} \boldsymbol{\kappa} + b_{l} \right) \right) d\boldsymbol{\kappa}$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \left(I_{\kappa^{i}} - \left(\boldsymbol{w}_{l}^{T} \boldsymbol{\kappa}^{i} + b_{l} \right) \right)$$

$$U(w_{u}, b_{u}) = \int \left(\left(\boldsymbol{w}_{u}^{T} \boldsymbol{\kappa} + b_{u} \right) - I_{\kappa}(x, y) \right) d\boldsymbol{\kappa}$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \left(\left(\boldsymbol{w}_{u}^{T} \boldsymbol{\kappa}^{i} + b_{u} \right) - I_{\kappa^{i}} \right)$$

top 2:

Step 2: $\mathbf{w}_l^T \mathbf{\kappa}^i + b_l \le I_{\kappa^i}(x, y) \le \mathbf{w}_u^T \mathbf{\kappa}^i + b_u, \forall i \in \{1, \dots, N\}$

This can be sound for a finite number of samples but not for all the values of κ . So, we must shift the lower (upper) bound by $-\delta_l$ $(+\delta_u)$ to make the constraint cover all the possible values.

 $\left(\widehat{\boldsymbol{w}}_{l}^{T}\boldsymbol{\kappa}+\widehat{b}_{l}\right)-I_{\kappa}(x,y)\leq\delta_{l},\forall\kappa\in D$ Where $\widehat{w}_{l}=w_{l}$ and $b_{l}=\widehat{b}_{l}-\delta_{l}$ To find δ_{l} , we calculate an upper bound of $f(\kappa)=\left(\widehat{\boldsymbol{w}}_{l}^{T}\boldsymbol{\kappa}+\widehat{b}_{l}\right)-I_{\kappa}(x,y).$

Option 1

Run box propagation (or other relaxations) to bound f in [u, l]. So, $f(\kappa) \leq u, \forall \kappa \in D$.

Option 2

Apply mean-value theorem $f(\boldsymbol{\kappa}) = f(\boldsymbol{\kappa}_c) + \nabla f(\boldsymbol{\kappa}')^T (\boldsymbol{\kappa} - \boldsymbol{\kappa}_c)$ $\leq f(\boldsymbol{\kappa}_c) + |\boldsymbol{L}|^T (\boldsymbol{\kappa} - \boldsymbol{\kappa}_c)$ $\leq f\left(\frac{1}{2}(\boldsymbol{h}_u + \boldsymbol{h}_l)\right) + \frac{1}{2}|\boldsymbol{L}|^T (\boldsymbol{h}_u - \boldsymbol{h}_l)$ Where $|\partial_i f(\boldsymbol{\kappa}_i)| \leq |L_i|, \forall \boldsymbol{\kappa}' \in D$ (by box prop.) $\boldsymbol{\kappa}_c = \frac{1}{2}(\boldsymbol{h}_u + \boldsymbol{h}_l) \text{ is the center point of } D = [\boldsymbol{h}_l, \boldsymbol{h}_u].$

Lecture 10: Visualization

Feature Visualization by Optimization Find xMaximize score $(x) - \sum \lambda_i R_i(x)$ Where score $(x) = \text{mean}(\text{layer}_n[x, y, z])$

Gradient Based Feature Attribution Calculate $\frac{\partial logit_t(x)}{\partial x}$: the contribution of each pixel to the classification result

Shapley Values: calculate the contribution of each feature i.

$$C_i = \sum_{S \subseteq P \setminus \{i\}} \frac{|S|! \, (|P| - |S| - 1)!}{|P|!} [f(S \cup \{i\}) - f(S)]$$

Where ${\cal P}$ is the set of features.

Lecture 11: Combining Logic and Deep Learning

Adversarial examples are a special case of a query.

<u>Declaratively</u>: impose constraints (kind of logic) on queried inputs.

<u>Operationally</u>: a way to perform queries to the network with these constraints.

Querying the network

Use standard logic: quantifiers, functions, variables, etc.

$$\Phi = \bigwedge_{j} NN(i)[j] < NN(i)[9]$$

$$\wedge ||i - deer||_{\infty} < 25$$

$$\wedge ||i - deer||_{\infty} > 5$$

Goal: find i that satisfies Φ .

Solve as optimization: find a translation T such that $T(\Phi)$ is a differentiable loss function. So, if x satisfies Φ , then $T(\Phi)(x) = 0$. Examples:

- $T(t_1 \le t_2) = \max(0, t_1 t_2).$
- $T(t_1 \neq t_2) = [t_1 = t_2].$
- $T(t_1 = t_2) = T(t_1 \le t_2 \land t_2 \le t_1)$
- $T(\phi \wedge \psi) = T(\phi) + T(\psi).$
- $T(\phi \lor \psi) = T(\phi) \cdot T(\psi).$

Training the Network with Background Knowledge

Supervised Learning with constraints

 $\forall z \in L_{\infty}(x, \epsilon), y = \operatorname{car} \Rightarrow NN(z)[\operatorname{truck}] \\> NN(z)[\operatorname{dog}] + \delta$

This slightly decreases the network accuracy but significantly increases the constraint accuracy.

Semi-Supervised Training

- 1. Train a base classifier $\widehat{\Theta}$ on labeled data.
- 2. Infer the labels with $\widehat{\Theta}$ for unlabeled data.
- 3. Use adversarial training to get robust $\Theta.$

Problem Statement Find θ Maximize $\rho(\theta)$ Where $\rho(\theta) = E_{s\sim D}[\forall z, \Phi(z, s, \theta)]$

violation is minimized.

 $\begin{array}{l} \underline{\text{Step 1: Rephrasing}}\\ \overline{\text{Find }\theta}\\ \text{Minimize }\rho(\theta)\\ \text{Where }\rho(\theta) = E_{s\sim D}\left[\max_{z}\neg\Phi(z,s,\theta)\right]\\ \Rightarrow \ \text{Find parameters such that the maximum} \end{array}$

Step 2: Translation Find θ Minimize $\rho(\theta)$ Where $\rho(\theta) = E_{s\sim D}[T(\Phi)(z_{worst}, s, \theta)]$ And $z_{worst} = \arg\min_{\tau} (T(\neg \Phi)(z, s, \theta))$

 \Rightarrow Find the worst-case counter example z_{worst} and minimize the violation at this point.

Example

$$\begin{split} \Phi(z, x, \theta) &= \|x - z\|_{\infty} \leq \epsilon \Rightarrow NN_{\theta}(z)[3] > \delta \\ \Phi(z, x, \theta) &= \neg \|x - z\|_{\infty} \leq \epsilon \lor NN_{\theta}(z)[3] > \delta \\ \neg \Phi(z, x, \theta) &= \|x - z\|_{\infty} \leq \epsilon \land NN_{\theta}(z)[3] \leq \delta \\ L(z, x, \theta) &= \max(0, \|x - z\|_{\infty} - \epsilon) \\ &+ \max(0, NN_{\theta}(z)[3] - \delta) \end{split}$$

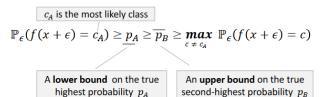
Solve $\max(0, NN_{\theta}(z)[3] - \delta)$ using PGD while projecting to $L_{\infty}(x, \epsilon)$ ball.

Lecture 12: Randomized Smoothing for Robustness

From an existing classifier $f: \mathbb{R}^d \to \mathcal{Y}$, construct a classifier g having statistical robustness guarantees.

 $g(x) = \arg \max_{c \in \mathcal{Y}} \mathbb{P}_{\epsilon}(f(x + \epsilon) = c)$

e.g., what is the most likely label of $x + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{1})$.



Robustness Guarantee

$$g(x + \delta) = c_A, \forall \|\delta\|_2 < R$$

Where the certification radius

$$R = \frac{\sigma}{2} \left(\Phi^{-1} \left(\underline{p_A} \right) - \Phi^{-1} (\overline{p_B}) \right)$$

and Φ^{-1} is the inverse of the standard Gaussian CDF.

FYI: $\mathbb{P}(x \le v) = p \Rightarrow \Phi^{-1}(p) = v.$

<u>Certified Accuracy</u>: matching the test sample label AND $R \ge T$ where T is a target radius.

```
Certification
```

 $\begin{array}{l} \textbf{function CERTIFY}(f,\sigma,x,n_0,n,\alpha)\\ \texttt{counts0} \leftarrow \texttt{SAMPLEUNDERNOISE}(f,x,n_0,\sigma)\\ \hat{c}_A \leftarrow \texttt{top index in counts0}\\ \texttt{counts} \leftarrow \texttt{SAMPLEUNDERNOISE}(f,x,n,\sigma)\\ \underline{p_A} \leftarrow \texttt{LOWERCONFBOUND}(\texttt{counts}[\hat{c}_A],n,1-\alpha)\\ \texttt{if } \underline{p_A} > \frac{1}{2} \texttt{ return prediction } \hat{c}_A \texttt{ and radius } \sigma \Phi^{-1}(\underline{p_A})\\ \texttt{else return ABSTAIN} \end{array}$

When noise σ is increased, the standard accuracy decreases but the certified robust radius increases

<u>Inference</u>

function PREDICT $(f, \sigma, x, n, \alpha)$ counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ) $\hat{c}_A, \hat{c}_B \leftarrow$ top two indices in counts $n_A, n_B \leftarrow$ counts $[\hat{c}_A]$, counts $[\hat{c}_B]$ **if** BINOMPVALUE $(n_A, n_A + n_B, 0.5) \leq \alpha$ return \hat{c}_A **else return** ABSTAIN