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Lecture 1: Introduction to NL

NLP is the backbone of many tech companies:

Siri, search engines, Alexa, etc.

The set of grammatical sentences is infinite even
if we have a fine lexicon.

NL is not context-free (e.g., Swiss-German).

Linguistics: the structure of human language.

NLP: engineer systems to solve problems.

NLP is a set of methods and algorithms for

making natural language accessible to computers.

Lecture 2: Backpropagation
Backpropagation is a linear-time dynamic
program to calculate derivatives (not chain rule).
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From composite function to computation graph.

NP is linear in the number of edges.

Automatic Differentiation

1. Write composite function as hypergraph
(a variable may be a function of more than one
intermediate variable) with variables as nodes
and hyperedges labeled with functions.

2. Perform forward propagation for a set of

inputs to get the function value.

Natural Language Processing

Instructor: Ryan Cotterell

3. Run BP on the graph using stored

forward values.

forward — propagate(f,x € R™):
Vi — { X ifi<n
" 10 otherwise
fori=n+1,..,N:
v; < pi((Vpa@iy))
return [vq, ..., vy]

N is the number of nodes and Pa — Parent.

back — propagate(f,x € R"):
v « forward — propagate(f, x)

of .
3o, & o,vie{l,..,N}
fori =N, ...,1:
of af o
aur  Ziiera( 3y 35, Pi ((VPa())
o of

return [ ) e
vy vy

we have a set of primitives and their derivatives.

Three types of differentiation:

. Symbolic: made by hand (calculations can
be redundant).
° Numerical: the finite-difference approx.

(so much slower).

. Automatic: backpropagation.

Lecture 3: Log-Linear Modeling (Meet
the Softmax)

ETH Ziirich

Random variables are about interactions between
different properties of elements of sample space
Q (independence, correlation, etc.).

Example:

Sample Space Q: set of all possible outcomes, e.g.,
O =1{1,2,3,4,5,6} for a dice.

Event Space E: set of potential results of the
experiment (set of subsets of Q).

Probability Function: p(e € E) € [0,1].

Log-linear Modeling

Inputs: x € X

Output label: y € Y

Feature function: f: X X Y - R¥

Parameters: 8 € RX

1
p(ylx,0) = 70) exp(6 - f(x,7))

where Z(0) = ¥, ey exp(6 - f(x,5"))
Log-linear because logp(y|x,0) =0 - f(x,y) +C

Feature Engineering: design f

e Preprocessing: tokenization, lower casing,
stemming, stop word removal, etc.

e Feature Design: n-grams, one-hot encoding,

bag of words, word embeddings, etc.

CountOf(money,x) Ay = 1
CountOf(bank,x) Ay =1

floy) =
CountOf(money,x) Ay =0

CountOf(bank,x) Ay =0
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Estimating the parameters

Training Data: {(x,, y,) =1

Log-likelihood: L(8) = Y., logp(yy,|x,, 6): convex
MLE estimation: 6,z = arg max L(6)

The gradient of a Log-Linear Model

55 = Zn S V) = Zn Ty DO, 0) fic G, ')
(important).

= observed feature count — expected feature

count.

Softmax
The default way of building probabilistic models

using neural networks.

hy
T and hy = 0 - f(x,y)

softmax(h,y,T) =
Zy/ exp%
Why Softmax?
limT1 ad 71— max(x, y)
lim T log [expf + exp ?] = max(x,y
Gradient of the Softmax

log softmax(h,y) = hy, — logz exp hyr
yl

0 log softmax(h, y)
oh;

= J,; — softmax(h, i)

Exponential Family
A family of probability distribution (more

general than softmax) of the form

p(x16) =%

Z(0): the partition function

h(x)exp 6 - ®(x)

h(x) determines the support

6: the canonical parameters

®(x) are the sufficient statistics

Lecture 4: Sentiment Analysis with
Multi-layer Perceptrons

How to encode words?

e One-hot encoding

+
|
OO = = =

nlp  interesting cool

e N-grams
n-grams

ele] o)

n interesting cool

Ip
\ / \ /

bigrams nip interesting interesting cool

Skip-gram

Preprocessing: get pairs of word (w, ¢,,,) for every
word w and every context word of w, i.e., c,.
Context is a window of size k.

The model: p(w|c) = %C)exp(ewrd (W) - ecex(€))
where e is the embedding function.

Estimation: maximize the log-likelihood by

computing the gradient wrt e,,,q(W) and egq, (W)
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Tnlogp(w™|c™)
= Zn(ewrd (W(n)) " €ctx (C(n)) - lOgZ(C(n)))
The output: two collections of word embeddings
{ewraW)}wey and {ecex (W)}wer

Evaluate Word Embeddings
Cosine Similarity: cos(u;, v;) =

Ui Xv;
el ]lvsll

Sentiment Analysis
Sentiment Analysis is the NLP task of classifying
utterances according to how they make the

interlocutor feel.

term frequency—inverse document frequency: we
look for words that are frequent in the considered

document but not frequent in other documents.

SA Pipeline: embedding — pooling = softmax —

backpropagation.

Lecture 5: Language Modeling with n-
grams and RNNS

Structured Prediction
Predict structured objects (strings, trees) rather
than scalar values (|Y| = 2" for part-of-speech

tagging!).

Given a vocabulary V ={a,b,c}, the task is
modeling the distribution over sequences over V*
(all possible outputs, i.e., {a, b, c,aa,ab, ac, ... }).

Without any prior assumption, |V*| — oco.
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A language model is a weighting of the prefix

tree.

How to normalize?

1 !
p(y) = EHlt3;|1 Oy, and Z = Xyrey Hltill OyL,

Global Normalization: find an efficient algorithm

to compute Z.

Local Normalization
Choose the weights 8 strategically such that Z =
1: the probability of all children given their

parent is 1.

Conditional Language Modeling
exp score(y,x)

Yy'ev exp score(y',x)

x can be source text (translation), signal (speech

p(ylx) =

recognition), long text (summarization).

y is the target text.

n-gram Models
key idea: we enforce a finite number of histories
to make modeling easier.

Pely<e) = pWelye-1, - Ye-ns1)
Condition on only the last n — 1 words.

input history
yl‘-J

RNNs

y encodes the token and h for the entire context.

Backpropagation Through Time
Perform backpropagation after unfolding the
network.

Exploding/vanishing gradient.

Lecture 6: Part-of-Speech Tagging
Assign each word in a sentence to a grammatical
category.

Setup: score(t,w) where t is a tag sequence and

w is a word sequence (sentence).

Condition Random Fields
exp score(t,x)
Y.t7erN exp score(t',x)
N = |w|: the length of the sentence — runs in
o(TI™).

p(tlx) =

Score function (anything!)
Linear: score(t,w) =0 - f(t,w)
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Non-linear: score(t,w) = NNg(t,w)

To reduce computations, we assume a structure.

score(t,w) = Y, score(< t,,_1,t, >, w): bigram

Calculate the normalizer:
Xt er expscore(< to, ty >,w) X .. X
Dtyer expscore(< ty_q, ty >,w)

Blw,ty) « 1

B(w,t,) « 3, .7 exp{score (t,,t,i1), W)} x B(W,t,.1)

Semiring R =< 4,,8,0,1 >
(A,8,0): commutative monoid.

2. (A,®,1): monoid (no inverse).
3. & distributes over .
4. 0 is an annihilator.

CRF as Softmax
To estimate the parameters, we maximize the
log-likelihood:

Z (score(t(i), w®)

score(t’, w(i))>

—Tlo Z ex
8 t'eTN P T

When T - 0, we get:
@ ,®) _ 1@
z (score(t U owt ) tr;ré%] score(t ,wi ))

Lexical semantics is the study of meaning of

words.
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Compositional semantics is the study of the

meaning of utterance (neutral term for chunk of

word).

Meaning: we know the meaning of an utterance

u iff we know all the situations where us is true.

Skip-gram is a probabilistic model p(w|c) =
1
z(c)
context, where Z(c) = ¥,,rey exp{e[w'] e[c]}.

exp{e[w]Te[c]} to predict a word given its

Skip-gram objective: Y., e[w,]1Te[c,] —log Z(cy)
A word w €V, is the concatenation [e [w]; e[w]],

i.e., word and context vector.

Lecture 7: Context-Free Parsing with
CKY

Syntactic Constituency

The mathematical study of structure of sentences
(word order).

Constituent: multiple words functioning as a unit
How to check if a set of words is a constituent?

Pronoun substitution ...

Context-Free Grammars

Grammar: rules to describe how to form
sentences from words.

Context-free grammar: rules can be applied
regardless of the context.

Example: every node is a constituent

Fruit flies like a green banana Fruit flies like a green banana

Probabilistic CFGs: assign a probability to each

production locally normalized).

The Parsing Problem
Get a tree given a sentence.

The probability of a tree given a sentence:

1
p(t|s) = mexp score(t)

Z(s) = z exp score(t’)
t'eT(s)

Where T'(s) is the set of trees that yields s.

Chomsky Normal Form
e N; > N,N; where N; are non-terminals.
e N — a where a is terminal.

— a finite number of trees given a sentence s.

The CKY Algorithm
An efficient dynamic program to compute the
normalizer of the parser in a CNF.

(see slides for algorithm)

Lecture 8: Dependency Parsing with the

Matrix-Tree Theorem

Dependency Parsing
Dependency Grammar is an alternative to
constituency grammar: link every word with its

syntactic head.
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Dependency Parsing: construct a tree relating

words with syntactic relations: directed & labeled

Projective Trees: no overlapping arcs.

Non-Projective Tree: overlapping arcs.

Jl::.l e - el T
B i 0 iy . I‘\.
A L 0 P L/,.--—*J\' 4
: S [, O
Ly will e e 2
., el

N e —————
X

# . /: S :h.-‘," : Az ) 'ﬁl(_bl
J:_\Lllz.it.k ote o PiERe \L“l‘“'!ﬁ‘:]

Probability Distributions over Non-
Projective Trees

Now T (w) is non-projective spanning tree set —
o(n").

For simplicity, the edge-factored scoring function
is used, where (i = j) is an edge:
p(tlw) =
%H(i_)j)et exp score(i, j, w) exp score(r, w)
7 =
Xtrerw) [(ij)ee’ exp score(i, j, w) exp score(r, w)

Adjacency Matrix
A;j = expscore(i, j,w)
p; = exp score(j, w)

Number of undirected spanning trees: Z = detL
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L=D-A
—A;ifi #j
L= .
Y Ay otherwise
ki
Revisited
p; ifi=1
L,,—] = Z Ai’j ifZ :J
i =1, 4]
—Ajj otherwise

Decoding Non-Projective Trees

Find maximum-weight spanning tree

arg max Z score(i, j,w)
teT (i-j)et

Kruskal’s Algorithm: add the highest-score edge
that does not create a cycle: O(E logE).

Lecture 9: Transliteration with WFST's
Map strings between character sets.

Weighted Finite-State Transducers: there are a
finite number of states in our model of language.

Weighted: transition probabilities.

Construct a conditional distribution p(y|x). Its

structure is given by a WFST T:
| |
score(m) = 2 score(t,) = 2 w(t,)

n=1 n=1
where 1 is a path and 7 is a transition.

Decompose Score Function

1
p(ylx) = 7 exp score(y, x)

1 |7
= —Z expz score(t,)
Z mell(x,y) n=1

In an unambiguous WFST, the first sum can be
dropped because we have 0 or 1 path.
The normalizer: Z = }.,rcq+ exp score(y’, x).

How to compute?

Floyd-Warshall Algorithm
Find shortest paths in a weighted graph with

positive or negative edge weights.

Pseudocode
for each vertex v:
dist,, =0
for k,i,j:
lfdl] > dik + dkj:
dij < dy + dy;

Generalization to any semiring

let dist be a N x N array of minimum distances initialized to 0 (infinity)
for each edge (u, v) do

dist[u][v] < W[u][v] # This corresponds to W'
for each vertex v do

dist[v][v] — WIV[V] # This corresponds to W’
for kfrom 1 to N

forifrom1toN

forjfrom 1 to N
dist[i][j] <dist{/][j] = (dist[/][k] = dist[k][k]* = dist[K][j])

7 = T<Z W(ﬂ))) B
w€eQU{e}

Lecture 10: Machine Translation with

Transformers
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Sequence-to-Sequence Models
Model the probability distribution p(y|x): what’s
the most likely translation y of x.

T
p(xly) = l_L_lp(YtPC: Vi s Ve—1)

Inference

p1x)~N  p(Ixw)) p(|x91,92)

f I

‘ Encoder H Decoder Decoder Decoder

X

The Attention Mechanism
Use different context vector to represent the
input sequence depending on where we are in

output generation.



