Natural Language Processing

Instructor: Ryan Cotterell

Lecture 1: Introduction to NL

NLP is the backbone of many tech companies: Siri, search engines, Alexa, etc.

The set of grammatical sentences is infinite even if we have a fine lexicon. NL is not context-free (e.g., Swiss-German).

Linguistics: the structure of human language. NLP: engineer systems to solve problems.

NLP is a set of methods and algorithms for making natural language accessible to computers.

Lecture 2: Backpropagation

Backpropagation is a linear-time dynamic program to calculate derivatives (not chain rule). The chain rule: $\frac{\partial z_k}{\partial x_i} = \sum_j \frac{\partial z_k}{\partial y_j} \frac{\partial y_j}{\partial x_i}$.

From composite function to computation graph. NP is linear in the number of edges.

Automatic Differentiation

1. Write composite function as hypergraph (a variable may be a function of more than one intermediate variable) with variables as nodes and hyperedges labeled with functions.

2. Perform forward propagation for a set of inputs to get the function value.

3. Run BP on the graph using stored forward values.

forward – propagate $(f, x \in \mathbb{R}^n)$: $v_i \leftarrow \begin{cases} x_i \text{ if } i \leq n \\ 0 \text{ otherwise} \end{cases}$ for i = n + 1, ..., N: $v_i \leftarrow p_i(\langle v_{Pa(i)} \rangle)$ return $[v_1, ..., v_N]$

N is the number of nodes and $\mathrm{Pa}=\mathrm{Parent}.$

back - propagate(
$$f, x \in \mathbb{R}^{n}$$
):
 $v \leftarrow \text{forward} - \text{propagate}(f, x)$
 $\frac{\partial f}{\partial v_{i}} \leftarrow 0, \forall i \in \{1, ..., N\}$
for $i = N, ..., 1$:
 $\frac{\partial f}{\partial v_{i}} \leftarrow \sum_{j:i \in Pa(j)} \frac{\partial f}{\partial v_{j}} \frac{\partial}{\partial v_{i}} p_{j}(\langle v_{Pa(j)} \rangle)$
return $\left[\frac{\partial f}{\partial v_{1}}, ..., \frac{\partial f}{\partial v_{N}}\right]$

we have a set of primitives and their derivatives. Three types of differentiation:

- Symbolic: made by hand (calculations can be redundant).
- Numerical: the finite-difference approx. (so much slower).
- Automatic: backpropagation.

Lecture 3: Log-Linear Modeling (Meet the Softmax)

Random variables are about interactions between different properties of elements of sample space Ω (independence, correlation, etc.). Example: Sample Space Ω : set of all possible outcomes, e.g., $\Omega = \{1,2,3,4,5,6\}$ for a dice. Event Space E: set of potential results of the experiment (set of subsets of Ω). Probability Function: $p(e \in E) \in [0,1]$.

Log-linear Modeling

Inputs: $x \in \mathcal{X}$ Output label: $y \in \mathcal{Y}$ Feature function: $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^{K}$ Parameters: $\theta \in \mathbb{R}^{K}$ $p(y|x, \theta) = \frac{1}{Z(\theta)} \exp(\theta \cdot f(x, y))$ where $Z(\theta) = \sum_{y' \in \mathcal{Y}} \exp(\theta \cdot f(x, y'))$

Log-linear because $\log p(y|x,\theta) = \theta \cdot f(x,y) + C$

Feature Engineering: design \boldsymbol{f}

- Preprocessing: tokenization, lower casing, stemming, stop word removal, etc.
- Feature Design: n-grams, one-hot encoding, bag of words, word embeddings, etc.

$$f(x,y) = \begin{pmatrix} \text{CountOf}(\text{money}, x) \land y = 1\\ \text{CountOf}(\text{bank}, x) \land y = 1\\ \dots\\ \text{CountOf}(\text{money}, x) \land y = 0\\ \text{CountOf}(\text{bank}, x) \land y = 0 \end{pmatrix}$$

Mokhles Bouzaien

Estimating the parameters Training Data: $\{(x_n, y_n)\}_{n=1}^N$ Log-likelihood: $L(\theta) = \sum_n \log p(y_n | x_n, \theta)$: convex MLE estimation: $\theta_{MLE} = \arg \max_{\theta \in \Theta} L(\theta)$

The gradient of a Log-Linear Model $\frac{\partial L}{\partial \theta_k} = \sum_n f_k(x_n, y_n) - \sum_n \sum_{y'} p(y'|x_n, \theta) f_k(x_n, y')$ (important).

= observed feature count – expected feature count.

Softmax

The default way of building probabilistic models using neural networks.

softmax(h, y, T) =
$$\frac{\exp \frac{h_y}{T}}{\sum_{y'} \exp \frac{h_{y'}}{T}}$$
 and $h_y = \theta \cdot f(x, y)$

Why Softmax?

$$\lim_{T \to 0} T \log \left[\exp \frac{x}{T} + \exp \frac{y}{T} \right] = \max(x, y)$$

Gradient of the Softmax

$$\log \operatorname{softmax}(h, y) = h_y - \log \sum_{y'} \exp h_{y'}$$
$$\frac{\partial \log \operatorname{softmax}(h, y)}{\partial h_i} = \delta_{yi} - \operatorname{softmax}(h, i)$$

Exponential Family

A family of probability distribution (more general than softmax) of the form

$$p(x|\theta) = \frac{1}{Z(\theta)}h(x) \exp \theta \cdot \Phi(x)$$

 $Z(\theta)$: the partition function h(x) determines the support

$\boldsymbol{\theta} {:}$ the canonical parameters

 $\Phi(x)$ are the sufficient statistics

Lecture 4: Sentiment Analysis with Multi-layer Perceptrons How to encode words?

• One-hot encoding

Skip-gram

<u>Preprocessing</u>: get pairs of word (w, c_w) for every word w and every context word of w, i.e., c_w . Context is a window of size k.

<u>The model</u>: $p(w|c) = \frac{1}{Z(c)} \exp(e_{wrd}(w) \cdot e_{ctx}(c))$

where e is the embedding function.

Estimation: maximize the log-likelihood by computing the gradient wrt $e_{wrd}(w)$ and $e_{ctx}(w)$

ETH Zürich

$$\begin{split} & \sum_{n} \log p(w^{(n)} | c^{(n)}) \\ &= \sum_{n} \left(e_{wrd}(w^{(n)}) \cdot e_{ctx}(c^{(n)}) - \log Z(c^{(n)}) \right) \\ & \text{The output: two collections of word embeddings} \\ & \{e_{wrd}(w)\}_{w \in V} \text{ and } \{e_{ctx}(w)\}_{w \in V} \\ & \underline{\text{Evaluate Word Embeddings}} \\ & \text{Cosine Similarity: } \cos(u_i, v_i) = \frac{u_i \times v_i}{\|u_i\| \times \|v_i\|} \end{split}$$

Sentiment Analysis

Sentiment Analysis is the NLP task of classifying utterances according to how they make the interlocutor feel.

term frequency-inverse document frequency: we look for words that are frequent in the considered document but not frequent in other documents.

SA Pipeline: embedding \rightarrow pooling \rightarrow softmax \rightarrow backpropagation.

Lecture 5: Language Modeling with ngrams and RNNS Structured Prediction

Predict structured objects (strings, trees) rather than scalar values $(|\mathcal{Y}| = 2^n \text{ for part-of-speech} \text{ tagging!}).$

Given a vocabulary $V = \{a, b, c\}$, the task is modeling the distribution over sequences over V^* (all possible outputs, i.e., $\{a, b, c, aa, ab, ac, ...\}$). Without any prior assumption, $|V^*| \to \infty$.

How to normalize?

$$p(y) = \frac{1}{Z} \prod_{t=1}^{|y|} \theta_{y_{\leq t}}$$
 and $Z = \sum_{y' \in V^*} \prod_{t=1}^{|y'|} \theta_{y'_{\leq t}}$

Global Normalization: find an efficient algorithm to compute Z.

Local Normalization

Choose the weights θ strategically such that Z = 1: the probability of all children given their parent is 1.

Conditional Language Modeling

 $p(y|x) = \frac{\exp \text{score}(y,x)}{\sum_{y' \in V^*} \exp \text{score}(y',x)}$

x can be source text (translation), signal (speech recognition), long text (summarization).y is the target text.

n-gram Models

key idea: we enforce a finite number of histories to make modeling easier.

 $p(y_t|y_{< t}) = p(y_t|y_{t-1}, \dots, y_{t-n+1})$ Condition on only the last n-1 words.

\mathbf{RNNs}

y encodes the token and h for the entire context.

Backpropagation Through Time Perform backpropagation after unfolding the network.

 $\label{eq:constraint} Exploding/vanishing \ gradient.$

Lecture 6: Part-of-Speech Tagging

Assign each word in a sentence to a grammatical category.

Setup: score(t,w) where t is a tag sequence and w is a word sequence (sentence).

Condition Random Fields

$$p(t|x) = \frac{\exp \text{score}(t,x)}{\sum_{t' \in \mathcal{T}^N} \exp \text{score}(t',x)}$$

N = |w|: the length of the sentence \rightarrow runs in $O(|\mathcal{T}|^N)$.

Score function (anything!) Linear: score(t, w) = $\theta \cdot f(t, w)$ Non-linear: $score(t, w) = NN_{\theta}(t, w)$

To reduce computations, we assume a structure. $score(t, w) = \sum_{n} score(\langle t_{n-1}, t_n \rangle, w)$: bigram

Calculate the normalizer: $\sum_{t_1 \in \mathcal{T}} \exp \operatorname{score}(\langle t_0, t_1 \rangle, w) \times \dots \times \sum_{t_N \in \mathcal{T}} \exp \operatorname{score}(\langle t_{N-1}, t_N \rangle, w)$ $\beta(\mathbf{w}, t_N) \leftarrow 1$ for $n \leftarrow N-1, \dots, 0$:

 $eta(\mathbf{w},t_n) \leftarrow \sum_{t_{n+1} \in \mathcal{T}} \exp\{ ext{score} raket{t_n,t_{n+1}}, \mathbf{w})\} imes eta(\mathbf{w},t_{n+1})$

Semiring $R=< A, \oplus, \otimes, \bar{0}, \bar{1}>$

- 1. $(A, \bigoplus, \overline{0})$: commutative monoid.
- 2. $(A, \bigotimes, \overline{1})$: monoid (no inverse).
- 3. \otimes distributes over \oplus .
- 4. $\overline{\mathbf{0}}$ is an annihilator.

CRF as Softmax

To estimate the parameters, we maximize the log-likelihood:

$$\sum \left(\operatorname{score}(t^{(i)}, w^{(i)}) - T \log \sum_{t' \in \mathcal{T}^N} \exp \frac{\operatorname{score}(t', w^{(i)})}{T} \right)$$

When
$$T \rightarrow 0$$
, we get:

$$\sum \left(\text{score}(t^{(i)}, w^{(i)}) - \max_{t' \in \mathcal{T}^N} \text{score}(t', w^{(i)}) \right)$$

 $\underline{\text{Lexical semantics}}$ is the study of meaning of words.

Mokhles Bouzaien

<u>Compositional semantics</u> is the study of the meaning of utterance (neutral term for chunk of word).

Meaning: we know the meaning of an utterance u iff we know all the situations where us is true.

Skip-gram is a probabilistic model $p(w|c) = \frac{1}{Z(c)} \exp\{e[w]^T e[c]\}$ to predict a word given its context, where $Z(c) = \sum_{w' \in V} \exp\{e[w']^T e[c]\}$.

Skip-gram objective: $\sum_{n} e[w_n]^T e[c_n] - \log Z(c_n)$ A word $w \in V$, is the concatenation [e[w]; e[w]], i.e., word and context vector.

Lecture 7: Context-Free Parsing with CKY

Syntactic Constituency

The mathematical study of structure of sentences (word order).

Constituent: multiple words functioning as a unit How to check if a set of words is a constituent? Pronoun substitution ...

Context-Free Grammars

Grammar: rules to describe how to form sentences from words.

Context-free grammar: rules can be applied regardless of the context.

Example: every node is a constituent

Probabilistic CFGs: assign a probability to each production locally normalized).

The Parsing Problem

Get a tree given a sentence.

The probability of a tree given a sentence:

$$p(t|s) = \frac{1}{Z(s)} \exp \operatorname{score}(t)$$
$$Z(s) = \sum_{t' \in \mathcal{T}(s)} \exp \operatorname{score}(t')$$

Where $\mathcal{T}(s)$ is the set of trees that yields s.

Chomsky Normal Form

- $N_1 \rightarrow N_2 N_3$ where N_i are non-terminals.
- $N \rightarrow a$ where *a* is terminal.

 \rightarrow a finite number of trees given a sentence s.

The CKY Algorithm

An efficient dynamic program to compute the normalizer of the parser in a CNF. (see slides for algorithm)

Lecture 8: Dependency Parsing with the Matrix-Tree Theorem

Dependency Parsing

Dependency Grammar is an alternative to constituency grammar: link every word with its syntactic head. Dependency Parsing: construct a tree relating words with syntactic relations: directed & labeled

Projective Trees: no overlapping arcs. Non-Projective Tree: overlapping arcs.

Probability Distributions over Non-Projective Trees

Now $\mathcal{T}(w)$ is non-projective spanning tree set $\rightarrow O(n^n)$.

For simplicity, the edge-factored scoring function is used, where $(i \rightarrow j)$ is an edge:

 $\begin{aligned} p(t|w) &= \\ \frac{1}{Z} \prod_{(i \to j) \in t} \exp \operatorname{score}(i, j, w) \exp \operatorname{score}(r, w) \\ Z &= \\ \sum_{t' \in \mathcal{T}(w)} \prod_{(i \to j) \in t'} \exp \operatorname{score}(i, j, w) \exp \operatorname{score}(r, w) \end{aligned}$

Adjacency Matrix $\begin{aligned} A_{ij} &= \exp \operatorname{score}(i, j, w) \\ \rho_j &= \exp \operatorname{score}(j, w) \end{aligned}$ Number of undirected spanning trees: $Z = \det L$ Mokhles Bouzaien

$$L = D - A$$

$$-A_{ij} \text{ if } i \neq j$$

$$L_{ij} = \begin{cases} -A_{kj} \text{ otherwise} \\ \sum_{k \neq i} A_{kj} \text{ otherwise} \end{cases}$$

Revisited

$$L_{ij} = egin{cases}
ho_j & ext{if } i=1 \ \sum\limits_{\substack{i'=1,i'
eq j \ -A_{ij}}}^n A_{i'j} & ext{if } i=j \ \end{array}$$

Decoding Non-Projective Trees

Find maximum-weight spanning tree

 $\arg\max_{t\in\mathcal{T}}\sum_{(i\to j)\in t}\operatorname{score}(i,j,w)$

Kruskal's Algorithm: add the highest-score edge that does not create a cycle: $O(E \log E)$.

Lecture 9: Transliteration with WFSTs

Map strings between character sets.

Weighted Finite-State Transducers: there are a finite number of states in our model of language. Weighted: transition probabilities.

Construct a conditional distribution p(y|x). Its structure is given by a WFST T:

$$\operatorname{score}(\pi) = \sum_{n=1}^{|\pi|} \operatorname{score}(\tau_n) = \sum_{n=1}^{|\pi|} w(\tau_n)$$

where π is a path and τ is a transition.

Decompose Score Function

$$p(y|x) = \frac{1}{Z} \exp \operatorname{score}(y, x)$$
$$= \frac{1}{Z} \sum_{\pi \in \Pi(x, y)} \exp \sum_{n=1}^{|\pi|} \operatorname{score}(\tau_n)$$

In an unambiguous WFST, the first sum can be dropped because we have 0 or 1 path. The normalizer: $Z = \sum_{y' \in \Omega^*} \exp \text{score}(y', x)$. How to compute?

Floyd-Warshall Algorithm

Find shortest paths in a weighted graph with positive or negative edge weights.

Pseudocode for each vertex v: $dist_{vv} = 0$ for k,i,j: $if d_{ij} > d_{ik} + d_{kj}$: $d_{ij} \leftarrow d_{ik} + d_{kj}$

Generalization to any semiring

let dist be a N × N array of minimum distances initialized to 0 (infinity) for each edge (u, v) do dist $[u][v] \leftarrow W[u][v] // This$ corresponds to W¹ for each vertex v do dist $[v][v] \leftarrow W[v][v] // This corresponds to W⁰$ for k from 1 to N for i from 1 to N for j from 1 to N dist $[i][j] \leftarrow$ dist[i][j] (dist[i][k] \otimes dist $[k][k]^*$ \otimes dist[k][j])

$$Z = \alpha^T \left(\sum_{\omega \in \Omega \cup \{\epsilon\}} W^{(\omega)} \right)^* \beta$$

Lecture 10: Machine Translation with Transformers

Sequence-to-Sequence Models

Model the probability distribution p(y|x): what's the most likely translation y of x.

$$p(x|y) = \prod_{t=1}^{T} p(y_t|x, y_1, \dots, y_{t-1})$$

Inference

The Attention Mechanism

Use different context vector to represent the input sequence depending on where we are in output generation.

