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Natural Language Processing 
Instructor: Ryan Cotterell 

 
Lecture 1: Introduction to NL 
NLP is the backbone of many tech companies: 
Siri, search engines, Alexa, etc. 
 
The set of grammatical sentences is infinite even 
if we have a fine lexicon. 
NL is not context-free (e.g., Swiss-German). 
 
Linguistics: the structure of human language. 
NLP: engineer systems to solve problems. 
 
NLP is a set of methods and algorithms for 
making natural language accessible to computers. 
 
Lecture 2: Backpropagation 
Backpropagation is a linear-time dynamic 
program to calculate derivatives (not chain rule). 
The chain rule: 𝜕𝜕𝑧𝑧𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
= ∑ 𝜕𝜕𝑧𝑧𝑘𝑘

𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗 . 

From composite function to computation graph. 
NP is linear in the number of edges. 
 
Automatic Differentiation 

1. Write composite function as hypergraph 
(a variable may be a function of more than one 
intermediate variable) with variables as nodes 
and hyperedges labeled with functions. 

2. Perform forward propagation for a set of 
inputs to get the function value. 

3. Run BP on the graph using stored 
forward values. 
 
forward − propagate(𝑓𝑓, 𝑥𝑥 ∈ ℝ𝑛𝑛): 

   𝑣𝑣𝑖𝑖 ← � 𝑥𝑥𝑖𝑖  if 𝑖𝑖 ≤ 𝑛𝑛
0 otherwise

 

   for 𝑖𝑖 = 𝑛𝑛 + 1, … ,𝑁𝑁: 
      𝑣𝑣𝑖𝑖 ← 𝑝𝑝𝑖𝑖�〈𝑣𝑣𝑃𝑃𝑃𝑃(𝑖𝑖)〉� 
   return [𝑣𝑣1, … , 𝑣𝑣𝑁𝑁] 
 
𝑁𝑁 is the number of nodes and Pa = Parent. 
 
back − propagate(𝑓𝑓, 𝑥𝑥 ∈ ℝ𝑛𝑛): 
   𝑣𝑣 ← forward − propagate(𝑓𝑓, 𝑥𝑥) 
   𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑖𝑖
← 0,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁} 

   for 𝑖𝑖 = 𝑁𝑁, … ,1: 
      𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑖𝑖
← ∑ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑗𝑗

𝜕𝜕
𝜕𝜕𝑣𝑣𝑖𝑖

𝑝𝑝𝑗𝑗�〈𝑣𝑣𝑃𝑃𝑃𝑃(𝑗𝑗)〉�𝑗𝑗:𝑖𝑖∈𝑃𝑃𝑃𝑃(𝑗𝑗)  

   return � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣1

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣𝑁𝑁

� 

 
we have a set of primitives and their derivatives. 
Three types of differentiation: 
• Symbolic: made by hand (calculations can 
be redundant). 
• Numerical: the finite-difference approx. 
(so much slower). 
• Automatic: backpropagation. 
 
Lecture 3: Log-Linear Modeling (Meet 
the Softmax) 

Random variables are about interactions between 
different properties of elements of sample space 
Ω (independence, correlation, etc.). 
Example: 
Sample Space Ω: set of all possible outcomes, e.g., 
Ω = {1,2,3,4,5,6} for a dice. 
Event Space 𝐸𝐸: set of potential results of the 
experiment (set of subsets of Ω). 
Probability Function: 𝑝𝑝(𝑒𝑒 ∈ 𝐸𝐸) ∈ [0,1]. 
 
Log-linear Modeling 
Inputs: 𝑥𝑥 ∈ 𝒳𝒳 
Output label: 𝑦𝑦 ∈ 𝒴𝒴 
Feature function: 𝑓𝑓:𝒳𝒳 × 𝒴𝒴 → ℝ𝐾𝐾 
Parameters: 𝜃𝜃 ∈ ℝ𝐾𝐾 

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃) =
1

𝑍𝑍(𝜃𝜃) exp�𝜃𝜃 ⋅ 𝑓𝑓(𝑥𝑥,𝑦𝑦)� 

where 𝑍𝑍(𝜃𝜃) = ∑ exp�𝜃𝜃 ⋅ 𝑓𝑓(𝑥𝑥,𝑦𝑦′)�𝑦𝑦′∈𝒴𝒴  
Log-linear because log𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃) = 𝜃𝜃 ⋅ 𝑓𝑓(𝑥𝑥,𝑦𝑦) + 𝐶𝐶 
 
Feature Engineering: design 𝑓𝑓 
• Preprocessing: tokenization, lower casing, 

stemming, stop word removal, etc. 
• Feature Design: n-grams, one-hot encoding, 

bag of words, word embeddings, etc. 
 

𝑓𝑓(𝑥𝑥,𝑦𝑦) =

⎝

⎜
⎛

CountOf(money, 𝑥𝑥) ∧ 𝑦𝑦 = 1
CountOf(bank, 𝑥𝑥) ∧ 𝑦𝑦 = 1…

CountOf(money, 𝑥𝑥) ∧ 𝑦𝑦 = 0
CountOf(bank, 𝑥𝑥) ∧ 𝑦𝑦 = 0 ⎠

⎟
⎞
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Estimating the parameters 
Training Data: {(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)}𝑛𝑛=1𝑁𝑁  
Log-likelihood: 𝐿𝐿(𝜃𝜃) = ∑ log𝑝𝑝(𝑦𝑦𝑛𝑛|𝑥𝑥𝑛𝑛,𝜃𝜃)𝑛𝑛 : convex 
MLE estimation: 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max

𝜃𝜃∈Θ
𝐿𝐿(𝜃𝜃) 

 
The gradient of a Log-Linear Model 
𝜕𝜕𝑀𝑀
𝜕𝜕𝜃𝜃𝑘𝑘

= ∑ 𝑓𝑓𝑘𝑘(𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)𝑛𝑛 − ∑ ∑ 𝑝𝑝(𝑦𝑦′|𝑥𝑥𝑛𝑛 ,𝜃𝜃)𝑓𝑓𝑘𝑘(𝑥𝑥𝑛𝑛,𝑦𝑦′)𝑦𝑦′𝑛𝑛  

(important). 
= observed feature count – expected feature 
count. 
 
Softmax 
The default way of building probabilistic models 
using neural networks. 

softmax(ℎ,𝑦𝑦,𝑇𝑇) =
exp

ℎ𝑦𝑦
𝑇𝑇

∑ exp
ℎ𝑦𝑦′
𝑇𝑇𝑦𝑦′

 and ℎ𝑦𝑦 = 𝜃𝜃 ⋅ 𝑓𝑓(𝑥𝑥,𝑦𝑦) 

Why Softmax? 

lim
𝑇𝑇→0

𝑇𝑇 log �exp
𝑥𝑥
𝑇𝑇

+ exp
𝑦𝑦
𝑇𝑇
� = max(𝑥𝑥,𝑦𝑦) 

Gradient of the Softmax 

log softmax(ℎ,𝑦𝑦) = ℎ𝑦𝑦 − log� exp ℎ𝑦𝑦′
𝑦𝑦′

 

𝜕𝜕 log softmax(ℎ, 𝑦𝑦)
𝜕𝜕ℎ𝑖𝑖

= 𝛿𝛿𝑦𝑦𝑖𝑖 − softmax(ℎ, 𝑖𝑖) 

 
Exponential Family 
A family of probability distribution (more 
general than softmax) of the form 

𝑝𝑝(𝑥𝑥|𝜃𝜃) =
1

𝑍𝑍(𝜃𝜃) ℎ
(𝑥𝑥) exp 𝜃𝜃 ⋅ Φ(x) 

𝑍𝑍(𝜃𝜃): the partition function 
ℎ(𝑥𝑥) determines the support 
𝜃𝜃: the canonical parameters 

Φ(𝑥𝑥) are the sufficient statistics 
 
Lecture 4: Sentiment Analysis with 
Multi-layer Perceptrons 
How to encode words? 

• One-hot encoding 

 
• N-grams 

 
 
Skip-gram 
Preprocessing: get pairs of word (𝑤𝑤, 𝑐𝑐𝑤𝑤) for every 
word 𝑤𝑤 and every context word of 𝑤𝑤, i.e., 𝑐𝑐𝑤𝑤. 
Context is a window of size 𝑘𝑘. 
The model: 𝑝𝑝(𝑤𝑤|𝑐𝑐) = 1

𝑍𝑍(𝑐𝑐) exp�𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤(𝑤𝑤) ⋅ 𝑒𝑒𝑐𝑐𝑐𝑐𝑥𝑥(𝑐𝑐)� 

where 𝑒𝑒 is the embedding function. 
Estimation: maximize the log-likelihood by 
computing the gradient wrt 𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤(𝑤𝑤) and 𝑒𝑒𝑐𝑐𝑐𝑐𝑥𝑥(𝑤𝑤) 

∑ log 𝑝𝑝�𝑤𝑤(𝑛𝑛)|𝑐𝑐(𝑛𝑛)�𝑛𝑛   
= ∑ �𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤�𝑤𝑤(𝑛𝑛)� ⋅ 𝑒𝑒𝑐𝑐𝑐𝑐𝑥𝑥�𝑐𝑐(𝑛𝑛)� − log𝑍𝑍�𝑐𝑐(𝑛𝑛)��𝑛𝑛   

The output: two collections of word embeddings 
{𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤(𝑤𝑤)}𝑤𝑤∈𝑉𝑉 and {𝑒𝑒𝑐𝑐𝑐𝑐𝑥𝑥(𝑤𝑤)}𝑤𝑤∈𝑉𝑉 
Evaluate Word Embeddings 
Cosine Similarity: cos(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) = 𝑢𝑢𝑖𝑖×𝑣𝑣𝑖𝑖

‖𝑢𝑢𝑖𝑖‖×‖𝑣𝑣𝑖𝑖‖
 

 
Sentiment Analysis 
Sentiment Analysis is the NLP task of classifying 
utterances according to how they make the 
interlocutor feel. 
 
term frequency–inverse document frequency: we 
look for words that are frequent in the considered 
document but not frequent in other documents. 
 
SA Pipeline: embedding → pooling → softmax → 
backpropagation. 
 
Lecture 5: Language Modeling with n-
grams and RNNS 
Structured Prediction 
Predict structured objects (strings, trees) rather 
than scalar values (|𝒴𝒴| = 2𝑛𝑛 for part-of-speech 
tagging!). 
 
Given a vocabulary 𝑉𝑉 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, the task is 
modeling the distribution over sequences over 𝑉𝑉∗ 
(all possible outputs, i.e., {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑎𝑎𝑎𝑎,𝑎𝑎𝑏𝑏,𝑎𝑎𝑐𝑐, … }). 
Without any prior assumption, |𝑉𝑉∗| → ∞. 
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A language model is a weighting of the prefix 
tree. 

 
How to normalize? 

𝑝𝑝(𝑦𝑦) = 1
𝑍𝑍
∏ 𝜃𝜃𝑦𝑦≤𝑡𝑡

|𝑦𝑦|
𝑐𝑐=1  and 𝑍𝑍 = ∑ ∏ 𝜃𝜃𝑦𝑦≤𝑡𝑡′

�𝑦𝑦′�
𝑐𝑐=1𝑦𝑦′∈𝑉𝑉∗  

 
Global Normalization: find an efficient algorithm 
to compute 𝑍𝑍. 
 
Local Normalization 
Choose the weights 𝜃𝜃 strategically such that 𝑍𝑍 =
1: the probability of all children given their 
parent is 1. 
 
Conditional Language Modeling 

𝑝𝑝(𝑦𝑦|𝑥𝑥) =
exp score(y,x)

∑ exp score(y',x)𝑦𝑦′∈𝑉𝑉∗
 

𝑥𝑥 can be source text (translation), signal (speech 
recognition), long text (summarization). 
𝑦𝑦 is the target text. 
 
n-gram Models 
key idea: we enforce a finite number of histories 
to make modeling easier. 

𝑝𝑝(𝑦𝑦𝑐𝑐|𝑦𝑦<𝑐𝑐) = 𝑝𝑝(𝑦𝑦𝑐𝑐|𝑦𝑦𝑐𝑐−1, … ,𝑦𝑦𝑐𝑐−𝑛𝑛+1) 
Condition on only the last 𝑛𝑛 − 1 words. 
 

 
 
RNNs 
𝑦𝑦 encodes the token and ℎ for the entire context. 

 
Backpropagation Through Time 
Perform backpropagation after unfolding the 
network. 
Exploding/vanishing gradient. 
 
Lecture 6: Part-of-Speech Tagging 
Assign each word in a sentence to a grammatical 
category. 
Setup: score(t,w) where 𝑡𝑡 is a tag sequence and 
𝑤𝑤 is a word sequence (sentence). 
 
Condition Random Fields 

𝑝𝑝(𝑡𝑡|𝑥𝑥) =
exp score(t,x)

∑ exp score(t',x)𝑐𝑐′∈𝒯𝒯𝑁𝑁
 

𝑁𝑁 = |𝑤𝑤| : the length of the sentence → runs in 
𝑂𝑂(|𝒯𝒯|𝑁𝑁). 
 
Score function (anything!) 
Linear: score(𝑡𝑡,𝑤𝑤) = 𝜃𝜃 ⋅ 𝑓𝑓(𝑡𝑡,𝑤𝑤) 

Non-linear: score(𝑡𝑡,𝑤𝑤) = NN𝜃𝜃(𝑡𝑡,𝑤𝑤) 
 
To reduce computations, we assume a structure. 
score(𝑡𝑡,𝑤𝑤) = ∑ score(< 𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛 >,𝑤𝑤)𝑛𝑛 : bigram 
 
Calculate the normalizer: 
∑ exp score(< 𝑡𝑡0, 𝑡𝑡1 >,𝑤𝑤)𝑐𝑐1∈𝒯𝒯 × … ×
∑ exp score(< 𝑡𝑡𝑁𝑁−1, 𝑡𝑡𝑁𝑁 >,𝑤𝑤)𝑐𝑐𝑁𝑁∈𝒯𝒯   

 
 
Semiring 𝑅𝑅 =< 𝐴𝐴,⊕,⊗, 0� , 1� > 

1. (𝐴𝐴,⊕, 0�): commutative monoid. 
2. (𝐴𝐴,⊗, 1�): monoid (no inverse). 
3. ⊗ distributes over ⊕. 
4. 0� is an annihilator. 

 
CRF as Softmax 
To estimate the parameters, we maximize the 
log-likelihood: 

��score�𝑡𝑡(𝑖𝑖),𝑤𝑤(𝑖𝑖)�

− 𝑇𝑇 log� exp
score�𝑡𝑡′,𝑤𝑤(𝑖𝑖)�

𝑇𝑇𝑐𝑐′∈𝒯𝒯𝑁𝑁
� 

When 𝑇𝑇 → 0, we get: 

��score�𝑡𝑡(𝑖𝑖),𝑤𝑤(𝑖𝑖)� − max
𝑐𝑐′∈𝒯𝒯𝑁𝑁

score�𝑡𝑡′,𝑤𝑤(𝑖𝑖)�� 

 
Lexical semantics is the study of meaning of 
words. 
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Compositional semantics is the study of the 
meaning of utterance (neutral term for chunk of 
word). 
 
Meaning: we know the meaning of an utterance 
u iff we know all the situations where us is true. 
 
Skip-gram is a probabilistic model 𝑝𝑝(𝑤𝑤|𝑐𝑐) =
1

𝑍𝑍(𝑐𝑐) exp{𝑒𝑒[𝑤𝑤]𝑇𝑇𝑒𝑒[𝑐𝑐]} to predict a word given its 

context, where 𝑍𝑍(𝑐𝑐) = ∑ exp{𝑒𝑒[𝑤𝑤′]𝑇𝑇𝑒𝑒[𝑐𝑐]}𝑤𝑤′∈𝑉𝑉 . 
 
Skip-gram objective: ∑ 𝑒𝑒[𝑤𝑤𝑛𝑛]𝑇𝑇𝑒𝑒[𝑐𝑐𝑛𝑛]𝑛𝑛 − log𝑍𝑍(𝑐𝑐𝑛𝑛) 
A word 𝑤𝑤 ∈ 𝑉𝑉, is the concatenation �𝑒𝑒[𝑤𝑤]; 𝑒𝑒[𝑤𝑤]�, 
i.e., word and context vector. 
 
Lecture 7: Context-Free Parsing with 
CKY 
Syntactic Constituency 
The mathematical study of structure of sentences 
(word order). 
Constituent: multiple words functioning as a unit 
How to check if a set of words is a constituent? 
Pronoun substitution … 
 
Context-Free Grammars 
Grammar: rules to describe how to form 
sentences from words. 
Context-free grammar: rules can be applied 
regardless of the context. 
Example: every node is a constituent 

 
Probabilistic CFGs: assign a probability to each 
production locally normalized). 
 
The Parsing Problem 
Get a tree given a sentence. 
The probability of a tree given a sentence: 

𝑝𝑝(𝑡𝑡|𝑠𝑠) =
1

𝑍𝑍(𝑠𝑠) exp score(𝑡𝑡) 

𝑍𝑍(𝑠𝑠) = � exp score(𝑡𝑡′)
𝑐𝑐′∈𝒯𝒯(𝑠𝑠)

 

Where 𝒯𝒯(𝑠𝑠) is the set of trees that yields 𝑠𝑠. 
 
Chomsky Normal Form 

• 𝑁𝑁1 → 𝑁𝑁2𝑁𝑁3 where 𝑁𝑁𝑖𝑖 are non-terminals. 
• 𝑁𝑁 → 𝑎𝑎 where 𝑎𝑎 is terminal. 

→ a finite number of trees given a sentence 𝑠𝑠. 
 
The CKY Algorithm 
An efficient dynamic program to compute the 
normalizer of the parser in a CNF. 

(see slides for algorithm) 
 
Lecture 8: Dependency Parsing with the 
Matrix-Tree Theorem 
 
Dependency Parsing 
Dependency Grammar is an alternative to 
constituency grammar: link every word with its 
syntactic head. 

Dependency Parsing: construct a tree relating 
words with syntactic relations: directed & labeled 
 
Projective Trees: no overlapping arcs. 
Non-Projective Tree: overlapping arcs. 

 

 
 
Probability Distributions over Non-
Projective Trees 
Now 𝒯𝒯(𝑤𝑤) is non-projective spanning tree set →
𝑂𝑂(𝑛𝑛𝑛𝑛). 
 
For simplicity, the edge-factored scoring function 
is used, where (𝑖𝑖 → 𝑗𝑗) is an edge: 

𝑝𝑝(𝑡𝑡|𝑤𝑤) =
1
𝑍𝑍
∏ exp score(𝑖𝑖, 𝑗𝑗,𝑤𝑤)(𝑖𝑖→𝑗𝑗)∈𝑐𝑐 exp score(𝑟𝑟,𝑤𝑤)  

𝑍𝑍 =
∑ ∏ exp score(𝑖𝑖, 𝑗𝑗,𝑤𝑤)(𝑖𝑖→𝑗𝑗)∈𝑐𝑐′ exp score(𝑟𝑟,𝑤𝑤)𝑐𝑐′∈𝒯𝒯(𝑤𝑤)   
 
Adjacency Matrix 

𝐴𝐴𝑖𝑖𝑗𝑗 = exp score(𝑖𝑖, 𝑗𝑗,𝑤𝑤) 
𝜌𝜌𝑗𝑗 = exp score(𝑗𝑗,𝑤𝑤) 

Number of undirected spanning trees: 𝑍𝑍 = det 𝐿𝐿 
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𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴 

𝐿𝐿𝑖𝑖𝑗𝑗 = �
−𝐴𝐴𝑖𝑖𝑗𝑗  if 𝑖𝑖 ≠ 𝑗𝑗

� 𝐴𝐴𝑘𝑘𝑗𝑗
𝑘𝑘≠𝑖𝑖

 otherwise 

Revisited 

 
 
Decoding Non-Projective Trees 
Find maximum-weight spanning tree 

arg max
𝑐𝑐∈𝒯𝒯

� score(𝑖𝑖, 𝑗𝑗,𝑤𝑤)
(𝑖𝑖→𝑗𝑗)∈𝑐𝑐

 

Kruskal’s Algorithm: add the highest-score edge 
that does not create a cycle: 𝑂𝑂(𝐸𝐸 log𝐸𝐸). 
 
Lecture 9: Transliteration with WFSTs 
Map strings between character sets. 
Weighted Finite-State Transducers: there are a 
finite number of states in our model of language. 
Weighted: transition probabilities. 
 
Construct a conditional distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥). Its 
structure is given by a WFST 𝑇𝑇: 

score(𝜋𝜋) = � score(𝜏𝜏𝑛𝑛)
|𝜋𝜋|

𝑛𝑛=1
= � 𝑤𝑤(𝜏𝜏𝑛𝑛)

|𝜋𝜋|

𝑛𝑛=1
 

where 𝜋𝜋 is a path and 𝜏𝜏 is a transition. 
 
Decompose Score Function 

𝑝𝑝(𝑦𝑦|𝑥𝑥) =
1
𝑍𝑍

exp score(𝑦𝑦, 𝑥𝑥)

=
1
𝑍𝑍
� exp� score(𝜏𝜏𝑛𝑛)

|𝜋𝜋|

𝑛𝑛=1𝜋𝜋∈Π(𝑥𝑥,𝑦𝑦)
 

In an unambiguous WFST, the first sum can be 
dropped because we have 0 or 1 path. 
The normalizer: 𝑍𝑍 = ∑ exp score(𝑦𝑦′, 𝑥𝑥)𝑦𝑦′∈Ω∗ . 
How to compute? 
 
Floyd-Warshall Algorithm 
Find shortest paths in a weighted graph with 
positive or negative edge weights. 
 
Pseudocode 
for each vertex v: 
 dist𝑣𝑣𝑣𝑣 = 0 
for k,i,j: 
 if 𝑑𝑑𝑖𝑖𝑗𝑗 > 𝑑𝑑𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑘𝑘𝑗𝑗: 
  𝑑𝑑𝑖𝑖𝑗𝑗 ← 𝑑𝑑𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑘𝑘𝑗𝑗 
 
Generalization to any semiring 

 
 

𝑍𝑍 = 𝛼𝛼𝑇𝑇 �� 𝑊𝑊(𝜔𝜔)

𝜔𝜔∈Ω∪{𝜖𝜖}
�
∗

𝛽𝛽 

 
Lecture 10: Machine Translation with 
Transformers 

Sequence-to-Sequence Models 
Model the probability distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥): what’s 
the most likely translation 𝑦𝑦 of 𝑥𝑥. 

𝑝𝑝(𝑥𝑥|𝑦𝑦) = � 𝑝𝑝(𝑦𝑦𝑐𝑐|𝑥𝑥,𝑦𝑦1, … ,𝑦𝑦𝑐𝑐−1)
𝑇𝑇

𝑐𝑐=1
 

Inference 

 
 
The Attention Mechanism 
Use different context vector to represent the 
input sequence depending on where we are in 
output generation. 
 

___ FIN ___ 


