
Mokhles Bouzaien ETH Zürich

Natural Language Processing
Instructor: Ryan Cotterell

Lecture 1: Introduction to NL
NLP is the backbone of many tech companies:
Siri, search engines, Alexa, etc.

The set of grammatical sentences is infinite even
if we have a fine lexicon.
NL is not context-free (e.g., Swiss-German).

Linguistics: the structure of human language.
NLP: engineer systems to solve problems.

NLP is a set of methods and algorithms for
making natural language accessible to computers.

Lecture 2: Backpropagation
Backpropagation is a linear-time dynamic
program to calculate derivatives (not chain rule).
The chain rule: 𝜕𝜕𝑧𝑧𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
= ∑ 𝜕𝜕𝑧𝑧𝑘𝑘

𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗 .

From composite function to computation graph.
NP is linear in the number of edges.

Automatic Differentiation

1. Write composite function as hypergraph
(a variable may be a function of more than one
intermediate variable) with variables as nodes
and hyperedges labeled with functions.

2. Perform forward propagation for a set of
inputs to get the function value.

3. Run BP on the graph using stored
forward values.

forward − propagate(𝑓𝑓, 𝑥𝑥 ∈ ℝ𝑛𝑛):

 𝑣𝑣𝑖𝑖 ← � 𝑥𝑥𝑖𝑖 if 𝑖𝑖 ≤ 𝑛𝑛
0 otherwise

 for 𝑖𝑖 = 𝑛𝑛 + 1, … ,𝑁𝑁:
 𝑣𝑣𝑖𝑖 ← 𝑝𝑝𝑖𝑖�〈𝑣𝑣𝑃𝑃𝑃𝑃(𝑖𝑖)〉�
 return [𝑣𝑣1, … , 𝑣𝑣𝑁𝑁]

𝑁𝑁 is the number of nodes and Pa = Parent.

back − propagate(𝑓𝑓, 𝑥𝑥 ∈ ℝ𝑛𝑛):
 𝑣𝑣 ← forward − propagate(𝑓𝑓, 𝑥𝑥)
 𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑖𝑖
← 0,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁}

 for 𝑖𝑖 = 𝑁𝑁, … ,1:
 𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑖𝑖
← ∑ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑗𝑗

𝜕𝜕
𝜕𝜕𝑣𝑣𝑖𝑖

𝑝𝑝𝑗𝑗�〈𝑣𝑣𝑃𝑃𝑃𝑃(𝑗𝑗)〉�𝑗𝑗:𝑖𝑖∈𝑃𝑃𝑃𝑃(𝑗𝑗)

 return � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣1

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣𝑁𝑁

�

we have a set of primitives and their derivatives.
Three types of differentiation:
• Symbolic: made by hand (calculations can
be redundant).
• Numerical: the finite-difference approx.
(so much slower).
• Automatic: backpropagation.

Lecture 3: Log-Linear Modeling (Meet
the Softmax)

Random variables are about interactions between
different properties of elements of sample space
Ω (independence, correlation, etc.).
Example:
Sample Space Ω: set of all possible outcomes, e.g.,
Ω = {1,2,3,4,5,6} for a dice.
Event Space 𝐸𝐸: set of potential results of the
experiment (set of subsets of Ω).
Probability Function: 𝑝𝑝(𝑒𝑒 ∈ 𝐸𝐸) ∈ [0,1].

Log-linear Modeling
Inputs: 𝑥𝑥 ∈ 𝒳𝒳
Output label: 𝑦𝑦 ∈ 𝒴𝒴
Feature function: 𝑓𝑓:𝒳𝒳 × 𝒴𝒴 → ℝ𝐾𝐾
Parameters: 𝜃𝜃 ∈ ℝ𝐾𝐾

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃) =
1

𝑍𝑍(𝜃𝜃) exp�𝜃𝜃 ⋅ 𝑓𝑓(𝑥𝑥,𝑦𝑦)�

where 𝑍𝑍(𝜃𝜃) = ∑ exp�𝜃𝜃 ⋅ 𝑓𝑓(𝑥𝑥,𝑦𝑦′)�𝑦𝑦′∈𝒴𝒴
Log-linear because log𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃) = 𝜃𝜃 ⋅ 𝑓𝑓(𝑥𝑥,𝑦𝑦) + 𝐶𝐶

Feature Engineering: design 𝑓𝑓
• Preprocessing: tokenization, lower casing,

stemming, stop word removal, etc.
• Feature Design: n-grams, one-hot encoding,

bag of words, word embeddings, etc.

𝑓𝑓(𝑥𝑥,𝑦𝑦) =

⎝

⎜
⎛

CountOf(money, 𝑥𝑥) ∧ 𝑦𝑦 = 1
CountOf(bank, 𝑥𝑥) ∧ 𝑦𝑦 = 1…

CountOf(money, 𝑥𝑥) ∧ 𝑦𝑦 = 0
CountOf(bank, 𝑥𝑥) ∧ 𝑦𝑦 = 0 ⎠

⎟
⎞

Mokhles Bouzaien ETH Zürich

Estimating the parameters
Training Data: {(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)}𝑛𝑛=1𝑁𝑁
Log-likelihood: 𝐿𝐿(𝜃𝜃) = ∑ log𝑝𝑝(𝑦𝑦𝑛𝑛|𝑥𝑥𝑛𝑛,𝜃𝜃)𝑛𝑛 : convex
MLE estimation: 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max

𝜃𝜃∈Θ
𝐿𝐿(𝜃𝜃)

The gradient of a Log-Linear Model
𝜕𝜕𝑀𝑀
𝜕𝜕𝜃𝜃𝑘𝑘

= ∑ 𝑓𝑓𝑘𝑘(𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)𝑛𝑛 − ∑ ∑ 𝑝𝑝(𝑦𝑦′|𝑥𝑥𝑛𝑛 ,𝜃𝜃)𝑓𝑓𝑘𝑘(𝑥𝑥𝑛𝑛,𝑦𝑦′)𝑦𝑦′𝑛𝑛

(important).
= observed feature count – expected feature
count.

Softmax
The default way of building probabilistic models
using neural networks.

softmax(ℎ,𝑦𝑦,𝑇𝑇) =
exp

ℎ𝑦𝑦
𝑇𝑇

∑ exp
ℎ𝑦𝑦′
𝑇𝑇𝑦𝑦′

 and ℎ𝑦𝑦 = 𝜃𝜃 ⋅ 𝑓𝑓(𝑥𝑥,𝑦𝑦)

Why Softmax?

lim
𝑇𝑇→0

𝑇𝑇 log �exp
𝑥𝑥
𝑇𝑇

+ exp
𝑦𝑦
𝑇𝑇
� = max(𝑥𝑥,𝑦𝑦)

Gradient of the Softmax

log softmax(ℎ,𝑦𝑦) = ℎ𝑦𝑦 − log� exp ℎ𝑦𝑦′
𝑦𝑦′

𝜕𝜕 log softmax(ℎ, 𝑦𝑦)
𝜕𝜕ℎ𝑖𝑖

= 𝛿𝛿𝑦𝑦𝑖𝑖 − softmax(ℎ, 𝑖𝑖)

Exponential Family
A family of probability distribution (more
general than softmax) of the form

𝑝𝑝(𝑥𝑥|𝜃𝜃) =
1

𝑍𝑍(𝜃𝜃) ℎ
(𝑥𝑥) exp 𝜃𝜃 ⋅ Φ(x)

𝑍𝑍(𝜃𝜃): the partition function
ℎ(𝑥𝑥) determines the support
𝜃𝜃: the canonical parameters

Φ(𝑥𝑥) are the sufficient statistics

Lecture 4: Sentiment Analysis with
Multi-layer Perceptrons
How to encode words?

• One-hot encoding

• N-grams

Skip-gram
Preprocessing: get pairs of word (𝑤𝑤, 𝑐𝑐𝑤𝑤) for every
word 𝑤𝑤 and every context word of 𝑤𝑤, i.e., 𝑐𝑐𝑤𝑤.
Context is a window of size 𝑘𝑘.
The model: 𝑝𝑝(𝑤𝑤|𝑐𝑐) = 1

𝑍𝑍(𝑐𝑐) exp�𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤(𝑤𝑤) ⋅ 𝑒𝑒𝑐𝑐𝑐𝑐𝑥𝑥(𝑐𝑐)�

where 𝑒𝑒 is the embedding function.
Estimation: maximize the log-likelihood by
computing the gradient wrt 𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤(𝑤𝑤) and 𝑒𝑒𝑐𝑐𝑐𝑐𝑥𝑥(𝑤𝑤)

∑ log 𝑝𝑝�𝑤𝑤(𝑛𝑛)|𝑐𝑐(𝑛𝑛)�𝑛𝑛
= ∑ �𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤�𝑤𝑤(𝑛𝑛)� ⋅ 𝑒𝑒𝑐𝑐𝑐𝑐𝑥𝑥�𝑐𝑐(𝑛𝑛)� − log𝑍𝑍�𝑐𝑐(𝑛𝑛)��𝑛𝑛

The output: two collections of word embeddings
{𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤(𝑤𝑤)}𝑤𝑤∈𝑉𝑉 and {𝑒𝑒𝑐𝑐𝑐𝑐𝑥𝑥(𝑤𝑤)}𝑤𝑤∈𝑉𝑉
Evaluate Word Embeddings
Cosine Similarity: cos(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) = 𝑢𝑢𝑖𝑖×𝑣𝑣𝑖𝑖

‖𝑢𝑢𝑖𝑖‖×‖𝑣𝑣𝑖𝑖‖

Sentiment Analysis
Sentiment Analysis is the NLP task of classifying
utterances according to how they make the
interlocutor feel.

term frequency–inverse document frequency: we
look for words that are frequent in the considered
document but not frequent in other documents.

SA Pipeline: embedding → pooling → softmax →
backpropagation.

Lecture 5: Language Modeling with n-
grams and RNNS
Structured Prediction
Predict structured objects (strings, trees) rather
than scalar values (|𝒴𝒴| = 2𝑛𝑛 for part-of-speech
tagging!).

Given a vocabulary 𝑉𝑉 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, the task is
modeling the distribution over sequences over 𝑉𝑉∗
(all possible outputs, i.e., {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑎𝑎𝑎𝑎,𝑎𝑎𝑏𝑏,𝑎𝑎𝑐𝑐, … }).
Without any prior assumption, |𝑉𝑉∗| → ∞.

Mokhles Bouzaien ETH Zürich

A language model is a weighting of the prefix
tree.

How to normalize?

𝑝𝑝(𝑦𝑦) = 1
𝑍𝑍
∏ 𝜃𝜃𝑦𝑦≤𝑡𝑡

|𝑦𝑦|
𝑐𝑐=1 and 𝑍𝑍 = ∑ ∏ 𝜃𝜃𝑦𝑦≤𝑡𝑡′

�𝑦𝑦′�
𝑐𝑐=1𝑦𝑦′∈𝑉𝑉∗

Global Normalization: find an efficient algorithm
to compute 𝑍𝑍.

Local Normalization
Choose the weights 𝜃𝜃 strategically such that 𝑍𝑍 =
1: the probability of all children given their
parent is 1.

Conditional Language Modeling

𝑝𝑝(𝑦𝑦|𝑥𝑥) =
exp score(y,x)

∑ exp score(y',x)𝑦𝑦′∈𝑉𝑉∗

𝑥𝑥 can be source text (translation), signal (speech
recognition), long text (summarization).
𝑦𝑦 is the target text.

n-gram Models
key idea: we enforce a finite number of histories
to make modeling easier.

𝑝𝑝(𝑦𝑦𝑐𝑐|𝑦𝑦<𝑐𝑐) = 𝑝𝑝(𝑦𝑦𝑐𝑐|𝑦𝑦𝑐𝑐−1, … ,𝑦𝑦𝑐𝑐−𝑛𝑛+1)
Condition on only the last 𝑛𝑛 − 1 words.

RNNs
𝑦𝑦 encodes the token and ℎ for the entire context.

Backpropagation Through Time
Perform backpropagation after unfolding the
network.
Exploding/vanishing gradient.

Lecture 6: Part-of-Speech Tagging
Assign each word in a sentence to a grammatical
category.
Setup: score(t,w) where 𝑡𝑡 is a tag sequence and
𝑤𝑤 is a word sequence (sentence).

Condition Random Fields

𝑝𝑝(𝑡𝑡|𝑥𝑥) =
exp score(t,x)

∑ exp score(t',x)𝑐𝑐′∈𝒯𝒯𝑁𝑁

𝑁𝑁 = |𝑤𝑤| : the length of the sentence → runs in
𝑂𝑂(|𝒯𝒯|𝑁𝑁).

Score function (anything!)
Linear: score(𝑡𝑡,𝑤𝑤) = 𝜃𝜃 ⋅ 𝑓𝑓(𝑡𝑡,𝑤𝑤)

Non-linear: score(𝑡𝑡,𝑤𝑤) = NN𝜃𝜃(𝑡𝑡,𝑤𝑤)

To reduce computations, we assume a structure.
score(𝑡𝑡,𝑤𝑤) = ∑ score(< 𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛 >,𝑤𝑤)𝑛𝑛 : bigram

Calculate the normalizer:
∑ exp score(< 𝑡𝑡0, 𝑡𝑡1 >,𝑤𝑤)𝑐𝑐1∈𝒯𝒯 × … ×
∑ exp score(< 𝑡𝑡𝑁𝑁−1, 𝑡𝑡𝑁𝑁 >,𝑤𝑤)𝑐𝑐𝑁𝑁∈𝒯𝒯

Semiring 𝑅𝑅 =< 𝐴𝐴,⊕,⊗, 0� , 1� >

1. (𝐴𝐴,⊕, 0�): commutative monoid.
2. (𝐴𝐴,⊗, 1�): monoid (no inverse).
3. ⊗ distributes over ⊕.
4. 0� is an annihilator.

CRF as Softmax
To estimate the parameters, we maximize the
log-likelihood:

��score�𝑡𝑡(𝑖𝑖),𝑤𝑤(𝑖𝑖)�

− 𝑇𝑇 log� exp
score�𝑡𝑡′,𝑤𝑤(𝑖𝑖)�

𝑇𝑇𝑐𝑐′∈𝒯𝒯𝑁𝑁
�

When 𝑇𝑇 → 0, we get:

��score�𝑡𝑡(𝑖𝑖),𝑤𝑤(𝑖𝑖)� − max
𝑐𝑐′∈𝒯𝒯𝑁𝑁

score�𝑡𝑡′,𝑤𝑤(𝑖𝑖)��

Lexical semantics is the study of meaning of
words.

Mokhles Bouzaien ETH Zürich

Compositional semantics is the study of the
meaning of utterance (neutral term for chunk of
word).

Meaning: we know the meaning of an utterance
u iff we know all the situations where us is true.

Skip-gram is a probabilistic model 𝑝𝑝(𝑤𝑤|𝑐𝑐) =
1

𝑍𝑍(𝑐𝑐) exp{𝑒𝑒[𝑤𝑤]𝑇𝑇𝑒𝑒[𝑐𝑐]} to predict a word given its

context, where 𝑍𝑍(𝑐𝑐) = ∑ exp{𝑒𝑒[𝑤𝑤′]𝑇𝑇𝑒𝑒[𝑐𝑐]}𝑤𝑤′∈𝑉𝑉 .

Skip-gram objective: ∑ 𝑒𝑒[𝑤𝑤𝑛𝑛]𝑇𝑇𝑒𝑒[𝑐𝑐𝑛𝑛]𝑛𝑛 − log𝑍𝑍(𝑐𝑐𝑛𝑛)
A word 𝑤𝑤 ∈ 𝑉𝑉, is the concatenation �𝑒𝑒[𝑤𝑤]; 𝑒𝑒[𝑤𝑤]�,
i.e., word and context vector.

Lecture 7: Context-Free Parsing with
CKY
Syntactic Constituency
The mathematical study of structure of sentences
(word order).
Constituent: multiple words functioning as a unit
How to check if a set of words is a constituent?
Pronoun substitution …

Context-Free Grammars
Grammar: rules to describe how to form
sentences from words.
Context-free grammar: rules can be applied
regardless of the context.
Example: every node is a constituent

Probabilistic CFGs: assign a probability to each
production locally normalized).

The Parsing Problem
Get a tree given a sentence.
The probability of a tree given a sentence:

𝑝𝑝(𝑡𝑡|𝑠𝑠) =
1

𝑍𝑍(𝑠𝑠) exp score(𝑡𝑡)

𝑍𝑍(𝑠𝑠) = � exp score(𝑡𝑡′)
𝑐𝑐′∈𝒯𝒯(𝑠𝑠)

Where 𝒯𝒯(𝑠𝑠) is the set of trees that yields 𝑠𝑠.

Chomsky Normal Form

• 𝑁𝑁1 → 𝑁𝑁2𝑁𝑁3 where 𝑁𝑁𝑖𝑖 are non-terminals.
• 𝑁𝑁 → 𝑎𝑎 where 𝑎𝑎 is terminal.

→ a finite number of trees given a sentence 𝑠𝑠.

The CKY Algorithm
An efficient dynamic program to compute the
normalizer of the parser in a CNF.

(see slides for algorithm)

Lecture 8: Dependency Parsing with the
Matrix-Tree Theorem

Dependency Parsing
Dependency Grammar is an alternative to
constituency grammar: link every word with its
syntactic head.

Dependency Parsing: construct a tree relating
words with syntactic relations: directed & labeled

Projective Trees: no overlapping arcs.
Non-Projective Tree: overlapping arcs.

Probability Distributions over Non-
Projective Trees
Now 𝒯𝒯(𝑤𝑤) is non-projective spanning tree set →
𝑂𝑂(𝑛𝑛𝑛𝑛).

For simplicity, the edge-factored scoring function
is used, where (𝑖𝑖 → 𝑗𝑗) is an edge:

𝑝𝑝(𝑡𝑡|𝑤𝑤) =
1
𝑍𝑍
∏ exp score(𝑖𝑖, 𝑗𝑗,𝑤𝑤)(𝑖𝑖→𝑗𝑗)∈𝑐𝑐 exp score(𝑟𝑟,𝑤𝑤)

𝑍𝑍 =
∑ ∏ exp score(𝑖𝑖, 𝑗𝑗,𝑤𝑤)(𝑖𝑖→𝑗𝑗)∈𝑐𝑐′ exp score(𝑟𝑟,𝑤𝑤)𝑐𝑐′∈𝒯𝒯(𝑤𝑤)

Adjacency Matrix

𝐴𝐴𝑖𝑖𝑗𝑗 = exp score(𝑖𝑖, 𝑗𝑗,𝑤𝑤)
𝜌𝜌𝑗𝑗 = exp score(𝑗𝑗,𝑤𝑤)

Number of undirected spanning trees: 𝑍𝑍 = det 𝐿𝐿

Mokhles Bouzaien ETH Zürich

𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴

𝐿𝐿𝑖𝑖𝑗𝑗 = �
−𝐴𝐴𝑖𝑖𝑗𝑗 if 𝑖𝑖 ≠ 𝑗𝑗

� 𝐴𝐴𝑘𝑘𝑗𝑗
𝑘𝑘≠𝑖𝑖

 otherwise

Revisited

Decoding Non-Projective Trees
Find maximum-weight spanning tree

arg max
𝑐𝑐∈𝒯𝒯

� score(𝑖𝑖, 𝑗𝑗,𝑤𝑤)
(𝑖𝑖→𝑗𝑗)∈𝑐𝑐

Kruskal’s Algorithm: add the highest-score edge
that does not create a cycle: 𝑂𝑂(𝐸𝐸 log𝐸𝐸).

Lecture 9: Transliteration with WFSTs
Map strings between character sets.
Weighted Finite-State Transducers: there are a
finite number of states in our model of language.
Weighted: transition probabilities.

Construct a conditional distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥). Its
structure is given by a WFST 𝑇𝑇:

score(𝜋𝜋) = � score(𝜏𝜏𝑛𝑛)
|𝜋𝜋|

𝑛𝑛=1
= � 𝑤𝑤(𝜏𝜏𝑛𝑛)

|𝜋𝜋|

𝑛𝑛=1

where 𝜋𝜋 is a path and 𝜏𝜏 is a transition.

Decompose Score Function

𝑝𝑝(𝑦𝑦|𝑥𝑥) =
1
𝑍𝑍

exp score(𝑦𝑦, 𝑥𝑥)

=
1
𝑍𝑍
� exp� score(𝜏𝜏𝑛𝑛)

|𝜋𝜋|

𝑛𝑛=1𝜋𝜋∈Π(𝑥𝑥,𝑦𝑦)

In an unambiguous WFST, the first sum can be
dropped because we have 0 or 1 path.
The normalizer: 𝑍𝑍 = ∑ exp score(𝑦𝑦′, 𝑥𝑥)𝑦𝑦′∈Ω∗ .
How to compute?

Floyd-Warshall Algorithm
Find shortest paths in a weighted graph with
positive or negative edge weights.

Pseudocode
for each vertex v:
 dist𝑣𝑣𝑣𝑣 = 0
for k,i,j:
 if 𝑑𝑑𝑖𝑖𝑗𝑗 > 𝑑𝑑𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑘𝑘𝑗𝑗:
 𝑑𝑑𝑖𝑖𝑗𝑗 ← 𝑑𝑑𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑘𝑘𝑗𝑗

Generalization to any semiring

𝑍𝑍 = 𝛼𝛼𝑇𝑇 �� 𝑊𝑊(𝜔𝜔)

𝜔𝜔∈Ω∪{𝜖𝜖}
�
∗

𝛽𝛽

Lecture 10: Machine Translation with
Transformers

Sequence-to-Sequence Models
Model the probability distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥): what’s
the most likely translation 𝑦𝑦 of 𝑥𝑥.

𝑝𝑝(𝑥𝑥|𝑦𝑦) = � 𝑝𝑝(𝑦𝑦𝑐𝑐|𝑥𝑥,𝑦𝑦1, … ,𝑦𝑦𝑐𝑐−1)
𝑇𝑇

𝑐𝑐=1

Inference

The Attention Mechanism
Use different context vector to represent the
input sequence depending on where we are in
output generation.

___ FIN ___

