Natural Language Processing

Instructor: Ryan Cotterell

Lecture 1: Introduction to NL

NLP is the backbone of many tech companies: Siri, search engines, Alexa, etc.

The set of grammatical sentences is infinite even if we have a fine lexicon.
NL is not context-free (e.g., Swiss-German).

Linguistics: the structure of human language.
NLP: engineer systems to solve problems.

NLP is a set of methods and algorithms for making natural language accessible to computers.

Lecture 2: Backpropagation

Backpropagation is a linear-time dynamic program to calculate derivatives (not chain rule). The chain rule: $\frac{\partial z_{k}}{\partial x_{i}}=\sum_{j} \frac{\partial z_{k}}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}$.
From composite function to computation graph. NP is linear in the number of edges.

Automatic Differentiation

1. Write composite function as hypergraph (a variable may be a function of more than one intermediate variable) with variables as nodes and hyperedges labeled with functions.
2. Perform forward propagation for a set of inputs to get the function value.
3. Run BP on the graph using stored forward values.
forward - propagate $\left(f, x \in \mathbb{R}^{n}\right)$:

$$
\left.\begin{array}{l}
v_{i} \leftarrow\left\{\begin{array}{c}
x_{i} \text { if } i \leq n \\
0 \text { otherwise }
\end{array}\right. \\
\text { for } i=n+1, \ldots, N: \\
\quad v_{i} \leftarrow p_{i}\left(\left\langle v_{P a(i)}\right\rangle\right)
\end{array}\right\}
$$

N is the number of nodes and $\mathrm{Pa}=\mathrm{Parent}$.

$$
\begin{aligned}
& \text { back }-\operatorname{propagate}\left(f, x \in \mathbb{R}^{n}\right): \\
& v \leftarrow \text { forward }-\operatorname{propagate}(f, x) \\
& \frac{\partial f}{\partial v_{i}} \leftarrow 0, \forall i \in\{1, \ldots, N\} \\
& \text { for } i=N, \ldots, 1: \\
& \quad \frac{\partial f}{\partial v_{i}} \leftarrow \sum_{j: i \in P a(j)} \frac{\partial f}{\partial v_{j}} \frac{\partial}{\partial v_{i}} p_{j}\left(\left\langle v_{P a(j)}\right\rangle\right) \\
& \text { return }\left[\frac{\partial f}{\partial v_{1}}, \ldots, \frac{\partial f}{\partial v_{N}}\right]
\end{aligned}
$$

we have a set of primitives and their derivatives. Three types of differentiation:

- Symbolic: made by hand (calculations can be redundant).
- Numerical: the finite-difference approx. (so much slower).
- Automatic: backpropagation.

Lecture 3: Log-Linear Modeling (Meet the Softmax)

Random variables are about interactions between different properties of elements of sample space Ω (independence, correlation, etc.).
Example:
Sample Space Ω : set of all possible outcomes, e.g., $\Omega=\{1,2,3,4,5,6\}$ for a dice.
Event Space E : set of potential results of the experiment (set of subsets of Ω).
Probability Function: $p(e \in E) \in[0,1]$.

Log-linear Modeling

Inputs: $x \in \mathcal{X}$
Output label: $y \in \mathcal{Y}$
Feature function: $f: X \times \mathcal{Y} \rightarrow \mathbb{R}^{K}$
Parameters: $\theta \in \mathbb{R}^{K}$

$$
p(y \mid x, \theta)=\frac{1}{Z(\theta)} \exp (\theta \cdot f(x, y))
$$

where $Z(\theta)=\sum_{y^{\prime} \in y} \exp \left(\theta \cdot f\left(x, y^{\prime}\right)\right)$
Log-linear because $\log p(y \mid x, \theta)=\theta \cdot f(x, y)+C$

Feature Engineering: design f

- Preprocessing: tokenization, lower casing, stemming, stop word removal, etc.
- Feature Design: n-grams, one-hot encoding, bag of words, word embeddings, etc.

$$
f(x, y)=\left(\begin{array}{c}
\text { CountOf }(\text { money, } x) \wedge y=1 \\
\text { CountOf }(\text { bank, } x) \wedge y=1 \\
\ldots \\
\text { CountOf }(\text { money, } x) \wedge y=0 \\
\text { CountOf }(\text { bank, } x) \wedge y=0
\end{array}\right)
$$

Estimating the parameters
Training Data: $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$
Log-likelihood: $L(\theta)=\sum_{n} \log p\left(y_{n} \mid x_{n}, \theta\right)$: convex
MLE estimation: $\theta_{M L E}=\arg \max _{\theta \in \Theta} L(\theta)$

The gradient of a Log-Linear Model
$\frac{\partial L}{\partial \theta_{k}}=\sum_{n} f_{k}\left(x_{n}, y_{n}\right)-\sum_{n} \sum_{y^{\prime}} p\left(y^{\prime} \mid x_{n}, \theta\right) f_{k}\left(x_{n}, y^{\prime}\right)$ (important).
$=$ observed feature count - expected feature count.

Softmax

The default way of building probabilistic models using neural networks.
$\operatorname{softmax}(h, y, T)=\frac{\exp \frac{h_{y}}{T}}{\sum_{y^{\prime}} \exp \frac{h_{y^{\prime}}}{T}}$ and $h_{y}=\theta \cdot f(x, y)$
Why Softmax?

$$
\lim _{T \rightarrow 0} T \log \left[\exp \frac{x}{T}+\exp \frac{y}{T}\right]=\max (x, y)
$$

Gradient of the Softmax

$$
\begin{aligned}
& \log \operatorname{softmax}(h, y)=h_{y}-\log \sum_{y^{\prime}} \exp h_{y^{\prime}} \\
& \frac{\partial \log \operatorname{softmax}(h, y)}{\partial h_{i}}=\delta_{y i}-\operatorname{softmax}(h, i)
\end{aligned}
$$

Exponential Family

A family of probability distribution (more general than softmax) of the form

$$
p(x \mid \theta)=\frac{1}{Z(\theta)} h(x) \exp \theta \cdot \Phi(\mathrm{x})
$$

$Z(\theta)$: the partition function
$h(x)$ determines the support
θ : the canonical parameters
$\Phi(x)$ are the sufficient statistics

Lecture 4: Sentiment Analysis with Multi-layer Perceptrons

How to encode words?

- One-hot encoding

- N-grams

Skip-gram

Preprocessing: get pairs of word (w, c_{w}) for every word w and every context word of w, i.e., c_{w}. Context is a window of size k.
The model: $p(w \mid c)=\frac{1}{Z(c)} \exp \left(e_{w r d}(w) \cdot e_{c t x}(c)\right)$ where e is the embedding function.
Estimation: maximize the log-likelihood by computing the gradient wrt $e_{w r d}(w)$ and $e_{c t x}(w)$
$\sum_{n} \log p\left(w^{(n)} \mid c^{(n)}\right)$
$=\sum_{n}\left(e_{w r d}\left(w^{(n)}\right) \cdot e_{c t x}\left(c^{(n)}\right)-\log Z\left(c^{(n)}\right)\right)$
The output: two collections of word embeddings $\left\{e_{w r d}(w)\right\}_{w \in V}$ and $\left\{e_{c t x}(w)\right\}_{w \in V}$
Evaluate Word Embeddings
Cosine Similarity: $\cos \left(u_{i}, v_{i}\right)=\frac{u_{i} \times v_{i}}{\left\|u_{i}\right\| \times\left\|v_{i}\right\|}$

Sentiment Analysis

Sentiment Analysis is the NLP task of classifying utterances according to how they make the interlocutor feel.
term frequency-inverse document frequency: we look for words that are frequent in the considered document but not frequent in other documents.

SA Pipeline: embedding \rightarrow pooling \rightarrow softmax \rightarrow backpropagation.

Lecture 5: Language Modeling with ngrams and RNNS

Structured Prediction

Predict structured objects (strings, trees) rather than scalar values $\left(|\mathcal{Y}|=2^{n}\right.$ for part-of-speech tagging!).

Given a vocabulary $V=\{a, b, c\}$, the task is modeling the distribution over sequences over V^{*} (all possible outputs, i.e., $\{a, b, c, a a, a b, a c, \ldots\}$). Without any prior assumption, $\left|V^{*}\right| \rightarrow \infty$.

A language model is a weighting of the prefix tree.

How to normalize?
$p(y)=\frac{1}{Z} \prod_{t=1}^{|y|} \theta_{y_{\leq t}}$ and $Z=\sum_{y^{\prime} \in V^{*}} \prod_{t=1}^{\left|y^{\prime}\right|} \theta_{y_{\leq t}^{\prime}}$

Global Normalization: find an efficient algorithm to compute Z.

Local Normalization

Choose the weights θ strategically such that $Z=$ 1: the probability of all children given their parent is 1 .

Conditional Language Modeling

$$
p(y \mid x)=\frac{\exp \operatorname{score}(\mathrm{y}, \mathrm{x})}{\sum_{y^{\prime} \in V^{*}} \exp \operatorname{score}\left(\mathrm{y}^{\prime}, \mathrm{x}\right)}
$$

x can be source text (translation), signal (speech recognition), long text (summarization).
y is the target text.

n-gram Models

key idea: we enforce a finite number of histories to make modeling easier.

$$
p\left(y_{t} \mid y_{<t}\right)=p\left(y_{t} \mid y_{t-1}, \ldots, y_{t-n+1}\right)
$$

Condition on only the last $n-1$ words.

RNNs

y encodes the token and h for the entire context.

Backpropagation Through Time
Perform backpropagation after unfolding the network.
Exploding/vanishing gradient.

Lecture 6: Part-of-Speech Tagging

Assign each word in a sentence to a grammatical category.
Setup: score (t, w) where t is a tag sequence and w is a word sequence (sentence).

Condition Random Fields

$$
p(t \mid x)=\frac{\exp \operatorname{score}(\mathrm{t}, \mathrm{x})}{\sum_{t^{\prime} \in \mathcal{T}^{N}} \exp \operatorname{score}\left(\mathrm{t}^{\prime}, \mathrm{x}\right)}
$$

$N=|w|:$ the length of the sentence \rightarrow runs in $O\left(|\mathcal{T}|^{N}\right)$ 。

Score function (anything!)
Linear: $\operatorname{score}(t, w)=\theta \cdot f(t, w)$

Non-linear: $\operatorname{score}(t, w)=\mathrm{NN}_{\theta}(t, w)$

To reduce computations, we assume a structure. $\operatorname{score}(t, w)=\sum_{n} \operatorname{score}\left(<t_{n-1}, t_{n}>, w\right)$: bigram

Calculate the normalizer:
$\sum_{t_{1} \in \mathcal{T}} \exp \operatorname{score}\left(<t_{0}, t_{1}>, w\right) \times \ldots \times$
$\sum_{t_{N} \in \mathcal{T}} \exp \operatorname{score}\left(<t_{N-1}, t_{N}>, w\right)$

$$
\begin{aligned}
& \beta\left(\mathbf{w}, t_{N}\right) \leftarrow 1 \\
& \text { for } n \leftarrow N-1, \ldots, 0: \\
& \left.\quad \beta\left(\mathbf{w}, t_{n}\right) \leftarrow \sum_{t_{n+1} \in \mathcal{T}} \exp \left\{\text { score }\left\langle t_{n}, t_{n+1}\right\rangle, \mathbf{w}\right)\right\} \times \beta\left(\mathbf{w}, t_{n+1}\right)
\end{aligned}
$$

Semiring $R=<A, \oplus, \otimes, \overline{0}, \overline{1}>$

1. $(A, \oplus, \overline{0})$: commutative monoid.
2. $(A, \otimes, \overline{1}):$ monoid (no inverse).
3. \otimes distributes over \oplus.
4. $\overline{0}$ is an annihilator.

CRF as Softmax

To estimate the parameters, we maximize the log-likelihood:

$$
\begin{aligned}
& \sum\left(\operatorname{score}\left(t^{(i)}, w^{(i)}\right)\right. \\
& \left.-T \log \sum_{t^{\prime} \in \mathcal{T}^{N}} \exp \frac{\operatorname{score}\left(t^{\prime}, w^{(i)}\right)}{T}\right)
\end{aligned}
$$

When $T \rightarrow 0$, we get:

$$
\sum\left(\operatorname{score}\left(t^{(i)}, w^{(i)}\right)-\max _{t^{\prime} \in \mathcal{T}^{N}} \operatorname{score}\left(t^{\prime}, w^{(i)}\right)\right)
$$

Lexical semantics is the study of meaning of words.

Compositional semantics is the study of the meaning of utterance (neutral term for chunk of word).

Meaning: we know the meaning of an utterance u iff we know all the situations where us is true.

Skip-gram is a probabilistic model $p(w \mid c)=$ $\frac{1}{Z(c)} \exp \left\{e[w]^{T} e[c]\right\}$ to predict a word given its context, where $Z(c)=\sum_{w^{\prime} \in V} \exp \left\{e\left[w^{\prime}\right]^{T} e[c]\right\}$.

Skip-gram objective: $\sum_{n} e\left[w_{n}\right]^{T} e\left[c_{n}\right]-\log Z\left(c_{n}\right)$ A word $w \in V$, is the concatenation $[e[w] ; e[w]]$,
i.e., word and context vector.

Lecture 7: Context-Free Parsing with CKY

Syntactic Constituency

The mathematical study of structure of sentences (word order).
Constituent: multiple words functioning as a unit How to check if a set of words is a constituent? Pronoun substitution ...

Context-Free Grammars

Grammar: rules to describe how to form sentences from words.
Context-free grammar: rules can be applied regardless of the context.
Example: every node is a constituent

Probabilistic CFGs: assign a probability to each production locally normalized).

The Parsing Problem

Get a tree given a sentence.
The probability of a tree given a sentence:

$$
\begin{gathered}
p(t \mid s)=\frac{1}{Z(s)} \exp \operatorname{score}(t) \\
Z(s)=\sum_{t^{\prime} \in \mathcal{T}(s)} \exp \operatorname{score}\left(t^{\prime}\right)
\end{gathered}
$$

Where $\mathcal{T}(s)$ is the set of trees that yields s.

Chomsky Normal Form

- $N_{1} \rightarrow N_{2} N_{3}$ where N_{i} are non-terminals.
- $\quad N \rightarrow a$ where a is terminal.
\rightarrow a finite number of trees given a sentence s.

The CKY Algorithm

An efficient dynamic program to compute the normalizer of the parser in a CNF.
(see slides for algorithm)

Lecture 8: Dependency Parsing with the Matrix-Tree Theorem

Dependency Parsing

Dependency Grammar is an alternative to constituency grammar: link every word with its syntactic head.

Dependency Parsing: construct a tree relating words with syntactic relations: directed \& labeled

Projective Trees: no overlapping arcs.
Non-Projective Tree: overlapping arcs.

Probability Distributions over Non-

Projective Trees

Now $\mathcal{T}(w)$ is non-projective spanning tree set \rightarrow $O\left(n^{n}\right)$.

For simplicity, the edge-factored scoring function is used, where $(i \rightarrow j)$ is an edge:

$$
p(t \mid w)=
$$

$\frac{1}{Z} \prod_{(i \rightarrow j) \in t} \exp \operatorname{score}(i, j, w) \exp \operatorname{score}(r, w)$

$Z=$

$\sum_{t^{\prime} \in \mathcal{T}(w)} \prod_{(i \rightarrow j) \in t^{\prime}} \exp \operatorname{score}(i, j, w) \exp \operatorname{score}(r, w)$

Adjacency Matrix

$$
\begin{aligned}
A_{i j} & =\exp \operatorname{score}(i, j, w) \\
\rho_{j} & =\exp \operatorname{score}(j, w)
\end{aligned}
$$

Number of undirected spanning trees: $Z=\operatorname{det} L$

$$
\begin{gathered}
L=D-A \\
L_{i j}=\left\{\begin{array}{c}
-A_{i j} \text { if } i \neq j \\
\sum_{k \neq i} A_{k j} \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Revisited

$$
L_{i j}= \begin{cases}\rho_{j} & \text { if } i=1 \\ \sum_{i^{\prime}=1, i^{\prime} \neq j}^{n} A_{i^{\prime} j} & \text { if } i=j \\ -A_{i j} & \text { otherwise }\end{cases}
$$

Decoding Non-Projective Trees

Find maximum-weight spanning tree

$$
\arg \max _{t \in \mathcal{T}} \sum_{(i \rightarrow j) \in t} \operatorname{score}(i, j, w)
$$

Kruskal's Algorithm: add the highest-score edge that does not create a cycle: $O(E \log E)$.

Lecture 9: Transliteration with WFSTs

Map strings between character sets.
Weighted Finite-State Transducers: there are a finite number of states in our model of language. Weighted: transition probabilities.

Construct a conditional distribution $p(y \mid x)$. Its structure is given by a WFST T:

$$
\operatorname{score}(\pi)=\sum_{n=1}^{|\pi|} \operatorname{score}\left(\tau_{n}\right)=\sum_{n=1}^{|\pi|} w\left(\tau_{n}\right)
$$

where π is a path and τ is a transition.

Decompose Score Function

$$
\begin{aligned}
& p(y \mid x)=\frac{1}{Z} \exp \operatorname{score}(y, x) \\
& =\frac{1}{Z} \sum_{\pi \in \Pi(x, y)} \exp \sum_{n=1}^{|\pi|} \operatorname{score}\left(\tau_{n}\right)
\end{aligned}
$$

In an unambiguous WFST, the first sum can be dropped because we have 0 or 1 path.
The normalizer: $Z=\sum_{y^{\prime} \in \Omega^{*}} \exp \operatorname{score}\left(y^{\prime}, x\right)$.
How to compute?

Floyd-Warshall Algorithm

Find shortest paths in a weighted graph with positive or negative edge weights.

Pseudocode

for each vertex v :

$$
\operatorname{dist}_{v v}=0
$$

for $\mathrm{k}, \mathrm{i}, \mathrm{j}$:

$$
\begin{aligned}
& \text { if } \left.\begin{array}{rl}
d_{i j}>d_{i k} & +d_{k j} \\
& d_{i j}
\end{array}\right) d_{i k}+d_{k j}
\end{aligned}
$$

Generalization to any semiring
let dist be a $\mathrm{N} \times \mathrm{N}$ array of minimum distances initialized to $\mathbf{0}$ (infinity) for each edge (u, v) do
dist[$[u][v] \leftarrow W[u][v] / /$ This corresponds to W^{1}
for each vertex v do
dist[V][v] $\leftarrow \mathrm{W}[v][v] / /$ This corresponds to W^{0}
for k from 1 to N
for i from 1 to N
for j from 1 to N
$\operatorname{dist}[j]\left[J \leftarrow \operatorname{dist}[[J]] \oplus\left(\operatorname{dist}[][k] \otimes \operatorname{dist}[k][k]^{*} \otimes \operatorname{dist}[k][J)\right.\right.$

$$
Z=\alpha^{T}\left(\sum_{\omega \in \Omega \cup\{\epsilon\}} W^{(\omega)}\right)^{*} \beta
$$

Lecture 10: Machine Translation with Transformers

Sequence-to-Sequence Models

Model the probability distribution $p(y \mid x)$: what's the most likely translation y of x.

$$
p(x \mid y)=\prod_{t=1}^{T} p\left(y_{t} \mid x, y_{1}, \ldots, y_{t-1}\right)
$$

Inference

The Attention Mechanism
Use different context vector to represent the input sequence depending on where we are in output generation.
\qquad

