
Mokhles Bouzaien Page 1 of 7 ETH Zürich

Computer Vision
Instructors: Marc Pollefeys, Siyu Tang, Vittorio Ferrari

Lecture 1: Introduction & Pinhole Model
Computer Vision: automatic understanding of images
and video.
Challenges: illumination, scale, deformation, viewpoint,
occlusion, motion.

Homogeneous Coordinates
2D: 𝑙𝑙𝑇𝑇𝑥𝑥 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)𝑇𝑇(𝑥𝑥,𝑦𝑦, 1) = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐.
Intersection of 2 lines: 𝑥𝑥 = 𝑙𝑙 × 𝑙𝑙′
Joining 2 points: 𝑙𝑙 = 𝑥𝑥 × 𝑥𝑥′
NB: × is the cross product (aka produit vectoriel)

𝑥𝑥 × 𝑥𝑥′ = [𝑥𝑥]×𝑥𝑥′ = �
0 𝑧𝑧 −𝑦𝑦
−𝑧𝑧 0 𝑥𝑥
𝑦𝑦 −𝑥𝑥 0

� 𝑥𝑥

(𝑥𝑥,𝑦𝑦, 0) is a point at infinity with direction (𝑥𝑥,𝑦𝑦).
(0,0, 𝑐𝑐) is a line at infinity.

3D: 𝜋𝜋𝑇𝑇𝑋𝑋 = (𝜋𝜋1,𝜋𝜋2,𝜋𝜋3,𝜋𝜋4)𝑇𝑇(𝑋𝑋,𝑌𝑌,𝑍𝑍, 1) = ∑𝜋𝜋𝑖𝑖𝑋𝑋𝑖𝑖
Point on the plane: 𝑋𝑋 ∈ 𝑃𝑃 ⇔ 𝜋𝜋𝑇𝑇𝑋𝑋 = 0
Joining 3 points: (𝑋𝑋1𝑇𝑇 ,𝑋𝑋2𝑇𝑇 ,𝑋𝑋3𝑇𝑇)𝑇𝑇𝜋𝜋 = 0
Intersection of 3 planes: (𝜋𝜋1𝑇𝑇,𝜋𝜋2𝑇𝑇,𝜋𝜋3𝑇𝑇)𝑇𝑇𝑋𝑋 = 0
Lines:

𝑊𝑊 = (𝑋𝑋1𝑇𝑇 ,𝑋𝑋2𝑇𝑇)𝑇𝑇 or 𝜆𝜆𝑋𝑋1 + 𝜇𝜇𝑋𝑋2
𝑊𝑊∗ = (𝜋𝜋1𝑇𝑇,𝜋𝜋2𝑇𝑇)𝑇𝑇 or 𝜆𝜆𝜋𝜋1 + 𝜇𝜇𝜋𝜋2
𝑊𝑊∗𝑊𝑊𝑇𝑇 = 𝑊𝑊𝑊𝑊∗𝑇𝑇 = 02×2

Plane by line and point: 𝑀𝑀𝜋𝜋 = �𝑊𝑊𝑋𝑋𝑇𝑇� 𝜋𝜋 = 0

Intersection of line and plane: 𝑀𝑀𝑋𝑋 = �𝑊𝑊
∗

𝜋𝜋𝑇𝑇 �𝑋𝑋 = 0

2D Projective Transformations
An invertible mapping ℎ:𝑃𝑃2 → 𝑃𝑃2 such that 3 points
𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 lie on the same line if and only if
ℎ(𝑥𝑥1),ℎ(𝑥𝑥2),ℎ(𝑥𝑥3) do.

Point: 𝑥𝑥′ = 𝐻𝐻𝑥𝑥
Line: 𝑙𝑙′ = 𝐻𝐻−𝑇𝑇𝑙𝑙

Conic: 𝐶𝐶′ = 𝐻𝐻−𝑇𝑇𝐶𝐶𝐻𝐻−1
Dual conic: 𝐶𝐶′∗ = 𝐻𝐻𝐶𝐶∗𝐻𝐻𝑇𝑇

Where det𝐻𝐻 ≠ 0
NB: same analogy for 3D points, planes, and quadrics.
Transformation 2D DoF 3D DoF Example

Projective 8 15

Affine 6 12

Similarity 4 7

Euclidian 3 6

Fixed Points and Lines
𝐻𝐻𝐻𝐻 = 𝜆𝜆𝐻𝐻 (𝐻𝐻 is the same point as 𝜆𝜆𝐻𝐻): eigenvectors.
For lines, take the eigenvectors of 𝐻𝐻−𝑇𝑇.

Affine Rectification: map back ideal points to infinity
(after a projection).

Lecture 2: Camera Models and Calibration
Pinhole Camera Model: (𝑋𝑋,𝑌𝑌,𝑍𝑍) ↦ (𝑓𝑓𝑋𝑋/𝑍𝑍, 𝑓𝑓𝑌𝑌/𝑍𝑍)
To avoid division by 𝑍𝑍, we use homogeneous coordinates:

(𝑋𝑋,𝑌𝑌,𝑍𝑍, 1)𝑇𝑇 ↦ (𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌,𝑍𝑍)𝑇𝑇 = �
𝑓𝑓
 𝑓𝑓
 1

0
0
0
� �
𝑋𝑋
𝑌𝑌
𝑍𝑍
1

�

= �
𝑓𝑓
 𝑓𝑓
 1

� �
1
 1
 1

0
0
0
� �
𝑋𝑋
𝑌𝑌
𝑍𝑍
1

�

⇒ camera specific matrix + projection operation
𝑥𝑥 = 𝑃𝑃𝑋𝑋 = diag(𝑓𝑓, 𝑓𝑓, 1)[𝐼𝐼|0]𝑋𝑋

Principle Point Offset:

𝑥𝑥 = 𝐾𝐾[𝐼𝐼|0]𝑋𝑋 = �
𝑓𝑓 𝑝𝑝𝑥𝑥
 𝑓𝑓 𝑝𝑝𝑦𝑦
 1

� [𝐼𝐼|0]𝑋𝑋

Capture the rotation and translation from origin:
𝑥𝑥 = 𝑃𝑃𝑋𝑋 = 𝐾𝐾[𝑅𝑅|𝑡𝑡]𝑋𝑋 = 𝐾𝐾𝑅𝑅[𝐼𝐼| − 𝐶𝐶]𝑋𝑋

Intrinsic camera parameters: 𝐾𝐾 = �
𝛼𝛼𝑥𝑥 𝑠𝑠 𝑝𝑝𝑥𝑥
 𝛼𝛼𝑦𝑦 𝑝𝑝𝑦𝑦
 1

�

Extrinsic camera parameters: 𝑅𝑅 and 𝑡𝑡
Point: 𝑥𝑥 = 𝑃𝑃𝑋𝑋
Line: 𝑙𝑙 = 𝑃𝑃𝑃𝑃 = 𝑃𝑃(𝑋𝑋1 + 𝜇𝜇𝑋𝑋2) = 𝑥𝑥1 + 𝜇𝜇𝑥𝑥2
Line Back-projection: Π = 𝑃𝑃𝑇𝑇𝑙𝑙

Compute the camera projection matrix given 𝑋𝑋𝑖𝑖 ↔ 𝑥𝑥𝑖𝑖
using Direct Linear Transform: we need 6
correspondences (𝑛𝑛 ≥ 6).
Data Normalization:

1. Move center mass to origin.
2. Scale to yield order 1 values.

𝑥𝑥� = 𝑇𝑇𝑥𝑥 = �
𝜎𝜎2𝐷𝐷 0 �̅�𝑥

0 𝜎𝜎2𝐷𝐷 𝑦𝑦�
0 0 1

�
−1

𝑥𝑥

𝑋𝑋� = 𝑈𝑈𝑋𝑋 = �

𝜎𝜎3𝐷𝐷 0 0 𝑋𝑋�
0 𝜎𝜎3𝐷𝐷 0 𝑌𝑌�
0
0

0
0

𝜎𝜎3𝐷𝐷 �̅�𝑍
0 1

�

−1

𝑋𝑋

𝑥𝑥𝑖𝑖 = 𝑃𝑃𝑋𝑋𝑖𝑖 ⇔ [𝑥𝑥𝑖𝑖]×𝑃𝑃𝑋𝑋𝑖𝑖 = 0

⇔ �
0𝑇𝑇 −𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇 𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇 0𝑇𝑇 −𝑥𝑥𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

−𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇 𝑥𝑥𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇 0𝑇𝑇
� �
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3
� = 0

⇔ �
0𝑇𝑇 −𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇 𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇 0𝑇𝑇 −𝑥𝑥𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇
� �
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3
� = 0

⇔ 𝐴𝐴𝑖𝑖𝑝𝑝 = 0 ⇔ (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛)𝑇𝑇𝑝𝑝 = 0 ⇔ 𝐴𝐴𝑝𝑝
= 0

Mokhles Bouzaien Page 2 of 7 ETH Zürich

Minimize geometric error:

min
P
�𝑑𝑑(𝑥𝑥𝑖𝑖 ,𝑃𝑃𝑋𝑋𝑖𝑖)2

Gold Standard Algorithm

1. Linear solution: normalization + DLT
2. Minimization of geometric error
3. Denormalization: 𝑃𝑃 = 𝑇𝑇−1𝑃𝑃�𝑈𝑈

Lecture 3: Local Features
Matching requirements
1. Detect the same points in both images.
2. Recognize the correspondence for each point.

Key point Localization: Harris Detector
Shift a patch window 𝑊𝑊. Calculate the summed squared
difference (SSD) before and after shifting.

𝐸𝐸(𝑢𝑢, 𝑣𝑣) = � �𝐼𝐼(𝑥𝑥 + 𝑢𝑢,𝑦𝑦 + 𝑣𝑣) − 𝐼𝐼(𝑥𝑥,𝑦𝑦)�2

(𝑥𝑥,𝑦𝑦)∈𝑊𝑊

≈ � �
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑢𝑢 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑣𝑣�
2

(𝑥𝑥,𝑦𝑦)∈𝑊𝑊

= � �[𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦] �𝑢𝑢𝑣𝑣��
2

(𝑥𝑥,𝑦𝑦)∈𝑊𝑊

= � [𝑢𝑢 𝑣𝑣] �
𝐼𝐼𝑥𝑥2 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 𝐼𝐼𝑦𝑦2

� �𝑢𝑢𝑣𝑣�
(𝑥𝑥,𝑦𝑦)∈𝑊𝑊

We calculate the eigenvalues 𝜆𝜆𝑖𝑖 and eigenvectors 𝐻𝐻𝑖𝑖 of

𝑀𝑀 = ∑ 𝑤𝑤(𝑥𝑥,𝑦𝑦) �
𝐼𝐼𝑥𝑥2 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 𝐼𝐼𝑦𝑦2

�(𝑥𝑥,𝑦𝑦) by solving det(𝑀𝑀 − 𝜆𝜆𝐼𝐼) =

0.

𝑅𝑅 = 𝜆𝜆1𝜆𝜆2 − 𝜅𝜅(𝜆𝜆1 + 𝜆𝜆2)2 = det𝑀𝑀 − 𝜅𝜅trace2(𝑀𝑀)

Compare 𝑅𝑅 to a lower bound threshold to detect the
presence of corners.
The window can be uniform 𝐼𝐼 or Gaussian 𝐺𝐺(𝜎𝜎).

Rotation invariant: if the corner is rotated, the shape
(i.e., the eigenvalues) remains the same.
Not scale invariant.

Scale Invariant Region Selection
Going from points to regions (descriptors) given two
images of the same scene but with a large-scale
difference.
Blob detector: used to detect uniform regions using
Laplacian-of-Gaussian LoG which is expensive to
compute. So, it’s approximated by a Difference-of-
Gaussians DoG.

Local Descriptors
How to describe detected points for matching?
Patch: pixel values, color histogram, spatial histograms.

Scale Invariant Feature Transform (SIFT)
1. Device the patch into 4x4 sub-patches (cells).
2. Compute histogram of gradient orientations (8 angle

bins) for each cell.
3. Final descriptor of dimension 4x4x8.

Before comparing patches of across images, we normalize
the orientation to a fixed orientation depending on the
dominant angle of each patch.

Lecture 4: Optical Flow, Particle Filtering
Given two consecutive image frames, estimate the
motion of each pixel.
Assumptions: color constancy and small motion.

𝐼𝐼(𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑡𝑡,𝑦𝑦 + 𝑣𝑣𝑢𝑢𝑡𝑡, 𝑡𝑡 + 𝑢𝑢𝑡𝑡) = 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

+
𝜕𝜕𝐼𝐼
𝜕𝜕𝑡𝑡

= 0

𝐼𝐼𝑥𝑥𝑢𝑢 + 𝐼𝐼𝑦𝑦𝑣𝑣 + 𝐼𝐼𝑡𝑡 = 0
Solve for 𝑢𝑢 and 𝑣𝑣.

Lucas–Kanade method: constant flow for a 5x5 patch.

𝐼𝐼𝑥𝑥(𝑝𝑝𝑖𝑖)𝑢𝑢 + 𝐼𝐼𝑦𝑦(𝑝𝑝𝑖𝑖)𝑣𝑣 = −𝐼𝐼𝑡𝑡(𝑝𝑝𝑖𝑖),∀𝑖𝑖 ∈ {1, … ,25}
𝐴𝐴𝑥𝑥 = 𝑏𝑏 ⇒ 𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥 = 𝐴𝐴𝑇𝑇𝑏𝑏

⇔ �
∑ 𝐼𝐼𝑥𝑥𝐼𝐼𝑥𝑥𝑝𝑝∈𝑃𝑃 ∑ 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦𝑝𝑝∈𝑃𝑃
∑ 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦𝑝𝑝∈𝑃𝑃 ∑ 𝐼𝐼𝑦𝑦𝐼𝐼𝑦𝑦𝑝𝑝∈𝑃𝑃

� �𝑢𝑢𝑣𝑣� = −�
∑ 𝐼𝐼𝑥𝑥𝐼𝐼𝑡𝑡𝑝𝑝∈𝑃𝑃
∑ 𝐼𝐼𝑦𝑦𝐼𝐼𝑡𝑡𝑝𝑝∈𝑃𝑃

�

⇒ 𝑥𝑥 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝑏𝑏
This method works best when 𝜆𝜆1 and 𝜆𝜆2 of 𝐴𝐴𝑇𝑇𝐴𝐴 are big,
i.e., presence of corners.
Problem: when there are no corners in the image.

Horn–Schunck method: rigid objects/smoothness
Color constancy updated: for every pixel:

min
𝑢𝑢,𝑣𝑣

�𝐼𝐼𝑥𝑥𝑢𝑢𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑦𝑦𝑣𝑣𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑡𝑡�
2

Smooth flow field:
min
u
�𝑢𝑢𝑖𝑖,𝑖𝑖 − 𝑢𝑢𝑖𝑖+1,𝑖𝑖�

2

Putting all together
min
𝑢𝑢,𝑣𝑣

∑ [𝐸𝐸𝑠𝑠(𝑖𝑖, 𝑗𝑗) + 𝜆𝜆𝐸𝐸𝑑𝑑(𝑖𝑖, 𝑗𝑗)]𝑖𝑖,𝑖𝑖 where:

Smoothness: 𝐸𝐸𝑠𝑠(𝑖𝑖, 𝑗𝑗) = 1
4
��𝑢𝑢𝑖𝑖,𝑖𝑖 − 𝑢𝑢𝑖𝑖+1,𝑖𝑖�

2 + �𝑢𝑢𝑖𝑖,𝑖𝑖 −

𝑢𝑢𝑖𝑖,𝑖𝑖+1�
2 + �𝑣𝑣𝑖𝑖,𝑖𝑖 − 𝑣𝑣𝑖𝑖+1,𝑖𝑖�

2 + �𝑣𝑣𝑖𝑖,𝑖𝑖 − 𝑣𝑣𝑖𝑖,𝑖𝑖+1�
2�

Brightness: 𝐸𝐸𝑑𝑑(𝑖𝑖, 𝑗𝑗) = �𝐼𝐼𝑥𝑥𝑢𝑢𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑦𝑦𝑣𝑣𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑡𝑡�
2

Weight: 𝜆𝜆

Use gradient descent to solve the problem.

Mokhles Bouzaien Page 3 of 7 ETH Zürich

Particle Filters
Predict
1. Particles are sampled according to their weights.
2. Apply motion model (velocity model) and add noise.

Update/Correct
1. State estimates are turned into observation using data

from the image (histogram from a bound box).
2. Update particles: those having a state with similar

histogram to the original will have bigger weights.

Lecture 5: Multiple View Geometry &
Structure from Motion
Aim: How can multiple images of the same 3D scene be
related?

Correspondence geometry: Given an image point 𝑥𝑥
in the first image, how does this constrain the position
of the corresponding point 𝑥𝑥’ in the second image?

Epipolars 𝐻𝐻 and 𝐻𝐻′ = the intersection of baseline with
image plane.
Epipolar plane 𝜋𝜋 = plane containing baseline

Epipolar lines 𝑙𝑙 and 𝑙𝑙′ = intersection of epipolar plane
with image.

The fundamental matrix 𝐹𝐹 to map 𝑥𝑥 ↦ 𝑙𝑙′
Geometric derivation

𝑥𝑥′ = 𝐻𝐻𝜋𝜋𝑥𝑥
𝑙𝑙′ = 𝐻𝐻′ × 𝑥𝑥′ = [𝐻𝐻′]×𝐻𝐻𝜋𝜋𝑥𝑥 = 𝐹𝐹𝑥𝑥

𝑙𝑙 = 𝐹𝐹𝑇𝑇𝑥𝑥′
Algebraic derivation
We generate a 3D point 𝑋𝑋(𝜆𝜆) = 𝑃𝑃+𝑥𝑥 + 𝜆𝜆𝐶𝐶 where 𝑃𝑃+ is
the pseudoinverse of 𝑃𝑃 (𝑃𝑃𝑃𝑃+ = 𝐼𝐼). The we project both
𝐶𝐶 and 𝑋𝑋(𝜆𝜆) on 𝑃𝑃′.

𝑙𝑙′ = 𝑃𝑃′𝐶𝐶 × 𝑃𝑃′𝑃𝑃+𝑥𝑥 = [𝐻𝐻′]×𝑃𝑃′𝑃𝑃+𝑥𝑥 = 𝐹𝐹𝑥𝑥
For every 𝑥𝑥 ↔ 𝑥𝑥′, we have 𝑥𝑥′𝑇𝑇𝐹𝐹𝑥𝑥 = 𝑥𝑥𝑇𝑇𝐹𝐹𝑇𝑇𝑥𝑥′ = 0 where 𝐹𝐹
is the unique 3 × 3 rank 2 matrix satisfying that.
Relation between 𝐹𝐹 and homographies
[𝐻𝐻′]×𝐻𝐻𝜋𝜋 = 𝐹𝐹, 𝑙𝑙′ = 𝐻𝐻𝜋𝜋−𝑇𝑇𝑙𝑙, 𝐻𝐻′ = 𝐻𝐻𝜋𝜋𝐻𝐻 (𝐻𝐻𝜋𝜋 given)
𝑥𝑥′ = 𝐻𝐻𝜋𝜋𝑥𝑥 = [𝑙𝑙𝜋𝜋]×𝐹𝐹𝑥𝑥 (𝐹𝐹 given)

Camera geometry (motion): Given a set of
corresponding image points {𝑥𝑥𝑖𝑖 ↔ 𝑥𝑥𝑖𝑖′}, what are the
cameras 𝑃𝑃 and 𝑃𝑃’ for the two views?

𝑥𝑥 = 𝑃𝑃𝑋𝑋 = (𝑃𝑃𝐻𝐻)(𝐻𝐻−1𝑋𝑋) = 𝑃𝑃�𝑋𝑋�
𝑥𝑥′ = 𝑃𝑃′𝑋𝑋 = (𝑃𝑃′𝐻𝐻)(𝐻𝐻−1𝑋𝑋) = 𝑃𝑃�′𝑋𝑋�

(𝑃𝑃,𝑃𝑃′) ↦ 𝐹𝐹 is unique

𝐹𝐹 ↦ (𝑃𝑃,𝑃𝑃′) is NOT unique
We can choose the canonical way
𝑃𝑃 = [𝐼𝐼|0] and 𝑃𝑃′ = [𝑀𝑀|𝑚𝑚] = [[𝐻𝐻′]×𝐹𝐹 + 𝐻𝐻′𝑣𝑣𝑇𝑇|𝜆𝜆𝐻𝐻′]
Given a point 𝑥𝑥, we can limit 𝑥𝑥′ searching to the
corresponding epipolar line 𝑙𝑙′

𝑚𝑚2
𝑇𝑇𝐹𝐹𝑚𝑚1 = 𝑚𝑚2

𝑇𝑇𝑙𝑙2 = 𝑙𝑙1𝑇𝑇𝑚𝑚1 = 0
(1:34:15)

Lecture 6: Model Fitting & Structure from
Motion
Hough Transform: mapping between 2D space
(tokens) and (𝜃𝜃,𝜌𝜌) parameters space (votes). 𝑝𝑝 ↦ 𝑙𝑙 and
𝑙𝑙 ↦ 𝑝𝑝.

𝜌𝜌 = 𝑥𝑥 cos𝜃𝜃 + 𝑦𝑦 sin𝜃𝜃

Line Fitting
Incremental Line Fitting: include a new point each time
and fit a line, until the new added point is far from the
lin.
K-means Line Fitting: randomly pick lines, associate
points to line, and refit line.

Problem? Squared Error can be a source of bias in the
presence of noise points. Because a quadratic function
gives too much weight to outliners. Instead, we use

𝜌𝜌(𝑟𝑟,𝜎𝜎) = 𝑟𝑟2

𝜎𝜎2+𝑟𝑟2
 where 𝜓𝜓(𝑟𝑟,𝜎𝜎) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑟𝑟
= 2𝑟𝑟𝜎𝜎2

(𝜎𝜎2+𝑟𝑟2)2
.

RANSAC: randomly choose a subset, fit to it, anything
close is signal, refit, redo.
Choose 𝑁𝑁 (number of trials) so that at least one random
sample is outliers-free (with a 𝑝𝑝 = 0.99 for example).

(1 − (1 − 𝐻𝐻)𝑠𝑠)𝑁𝑁 = 1 − 𝑝𝑝

𝑁𝑁 =
log(1 − 𝑝𝑝)

log(1 − (1 − 𝐻𝐻)𝑠𝑠)

𝑝𝑝: success probability and 𝐻𝐻: outliners ratio.

Mokhles Bouzaien Page 4 of 7 ETH Zürich

Cross-validation: use part of the data to fit a model
and the rest to evaluate it.

Structure from Motion
Recovering 3D structure of the scene from camera
motion.
Factorization

• Affine Projection: �
𝑥𝑥𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖� = �

𝑃𝑃𝑖𝑖𝑥𝑥

𝑃𝑃𝑖𝑖
𝑦𝑦� �

𝑋𝑋𝑖𝑖
𝑌𝑌𝑖𝑖
𝑍𝑍𝑖𝑖
1

�

�
𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑥𝑥4

𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖
𝑦𝑦4� = �

𝑥𝑥�𝑖𝑖𝑖𝑖
𝑦𝑦�𝑖𝑖𝑖𝑖
� = �

𝑃𝑃�𝑖𝑖𝑥𝑥

𝑃𝑃�𝑖𝑖
𝑦𝑦� �

𝑋𝑋𝑖𝑖
𝑌𝑌𝑖𝑖
𝑍𝑍𝑖𝑖
�

𝑥𝑥�𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑦𝑦�𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 − ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
• Orthographic Projection: 𝑚𝑚�𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝑖𝑖𝑀𝑀�𝑖𝑖

Where 𝑚𝑚�𝑖𝑖𝑖𝑖 = �
𝑥𝑥�𝑖𝑖𝑖𝑖
𝑦𝑦�𝑖𝑖𝑖𝑖
�, 𝑃𝑃�𝑖𝑖 = �

𝑃𝑃�𝑖𝑖𝑥𝑥

𝑃𝑃�𝑖𝑖
𝑦𝑦� and 𝑀𝑀�𝑖𝑖 = �

𝑋𝑋𝑖𝑖
𝑌𝑌𝑖𝑖
𝑍𝑍𝑖𝑖
�

Indexes: 𝑖𝑖 for cameras and 𝑗𝑗 for points.
All equations can be collected:

𝑚𝑚� = �𝑚𝑚�𝑖𝑖𝑖𝑖�1≤𝑖𝑖≤𝑚𝑚,1≤𝑖𝑖≤𝑛𝑛
∈ ℝ2𝑚𝑚×𝑛𝑛

𝑃𝑃� = (𝑃𝑃�1, … ,𝑃𝑃�𝑚𝑚)𝑇𝑇 ∈ ℝ2𝑚𝑚×3
𝑀𝑀� = (𝑀𝑀�1, … ,𝑀𝑀�𝑛𝑛) ∈ ℝ3×𝑛𝑛

SVD-factorize 𝑚𝑚� = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 ⇒ 𝑃𝑃� = 𝑈𝑈,𝑀𝑀� = Σ𝑉𝑉𝑇𝑇
(COLMAP: open source pipeline)

Refining structure and motion by minimizing Euclidean
distances between 2D projected and observed points:
min
𝑃𝑃�𝑘𝑘,𝑀𝑀�𝑖𝑖

∑ ∑ 𝑑𝑑�𝑚𝑚𝑘𝑘𝑖𝑖 ,𝑃𝑃�𝑘𝑘𝑀𝑀�𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑘𝑘=1

Sum over all the points 𝑖𝑖 and all the images 𝑘𝑘.

Non-linear least-squares
Find 𝑃𝑃 such that 𝑋𝑋 = 𝑓𝑓(𝑃𝑃) by solving arg min

P
‖𝑋𝑋 − 𝑓𝑓(𝑃𝑃)‖

Newton iteration
𝑓𝑓(𝑃𝑃0 + Δ) ≈ 𝑓𝑓(𝑃𝑃0) + 𝐽𝐽Δ where 𝐽𝐽 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑃𝑃

‖𝑋𝑋 − 𝑓𝑓(𝑃𝑃1)‖ ≈ ‖𝑋𝑋 − 𝑓𝑓(𝑃𝑃0 + Δ)‖ = ‖𝑋𝑋 − 𝑓𝑓(𝑃𝑃0) − 𝐽𝐽Δ‖
= ‖𝐻𝐻0 − 𝐽𝐽Δ‖

We project on the Jacobian to get a unique solution ⇒
𝐽𝐽𝑇𝑇𝐽𝐽Δ = 𝐽𝐽𝑇𝑇𝐻𝐻0 ⇒ Δ = (𝐽𝐽𝑇𝑇𝐽𝐽)−1𝐽𝐽𝑇𝑇𝐻𝐻0
Generally, 𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖 + Δ where Δ = (𝐽𝐽𝑇𝑇𝐽𝐽)−1𝐽𝐽𝑇𝑇𝐻𝐻0.
Levenberg-Marquardt
We use 𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜆𝜆diag(𝐽𝐽𝑇𝑇𝐽𝐽) to make it invertible.

Lecture 7: (Multiview) Stereo
For standard stereo geometry, we have a pure translation
along x-axis:

𝐹𝐹 = [𝑡𝑡]× = �
0 0 0
0 0 1
0 −1 0

� 𝐹𝐹𝑥𝑥 = �
0
1
−𝑦𝑦

� 𝐹𝐹𝑇𝑇𝑥𝑥′ = �
0
1
−𝑦𝑦′

�

Stereo matching: for each pixel, look for the most
similar pixel on the epipolar line.
Higher level feature matching (edges, etc.) can yield
better results.

Constraints and Optimization

• Occlusions: some pixels may only appear in one
image: mutual match testing.

• Ordering constraint: the matching pixels appear
in the same order in both images.

Use Dynamic Programming (optimal path) to measure
similarities.

(2:35:00)

Lecture 8: Specific Object Recognition
Recognition
There are up to 3,000 object categories.
Category vs. Instance (e.g. celebrity) recognition.

History: geometric era, appearance-based models (color
histogram), sliding window, local features, parts-and-
shape models, bags of features.
Present: local & global methods + context + DL

Specific Object Recognition
Basic idea: see how many key points are close to the
other images’ key points (very slow).

Scaling to Large Databases
Index local features: each patch has a descriptor i.e., a
point in high-dimension space. Then see close points in
feature space.
To reduce calculations, we assign one center for each
cluster, and compare new features only with the cluster
center → construct a vocabulary.

Fast lookup: inverted index: find all images containing a
specific feature. Build a dictionary �𝑤𝑤𝑖𝑖: �𝑖𝑖𝑖𝑖1 , … , 𝑖𝑖𝑖𝑖𝑛𝑛�� where
𝑤𝑤 are words and 𝑖𝑖 images.
Given a query image containing a feature 𝑤𝑤, we can get
all images 𝑖𝑖 containing 𝑤𝑤.

How to choose vocabulary size?
Extract features from all training images and run multi-
level k-means (e.g., 10 cluster and 6 levels).

How to measure the model performance?
Precision = 𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝+𝑓𝑓𝑝𝑝
 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑛𝑛𝑡𝑡

𝑟𝑟𝑟𝑟𝑡𝑡𝑢𝑢𝑟𝑟𝑛𝑛𝑟𝑟𝑑𝑑

Recall = 𝑡𝑡𝑝𝑝
𝑡𝑡𝑝𝑝+𝑓𝑓𝑛𝑛

 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑛𝑛𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑛𝑛𝑡𝑡

Mokhles Bouzaien Page 5 of 7 ETH Zürich

Affine Transformation
Given a set of matching points {𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′} find the best
parameters 𝑝𝑝 such that 𝑥𝑥𝑖𝑖′ = 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑝𝑝) where 𝑓𝑓 is the
transformation function (translation, rotation, aspect,
affine, perspective, cylindrical).

Scaling: �𝑥𝑥′𝑦𝑦′� = �𝑎𝑎 0
0 𝑏𝑏� �

𝑥𝑥
𝑦𝑦�

Shear: �𝑥𝑥′𝑦𝑦′� = �1 𝑎𝑎
𝑏𝑏 1� �

𝑥𝑥
𝑦𝑦�

Rotation: �𝑥𝑥′𝑦𝑦′� = �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � �

𝑥𝑥
𝑦𝑦�

In general: �𝑥𝑥′𝑦𝑦′� = 𝑀𝑀 �
𝑥𝑥
𝑦𝑦�

Translation: �
𝑥𝑥′
𝑦𝑦′
1
� = �

1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

� �
𝑥𝑥
𝑦𝑦
1
�

Affine Transformation: �
𝑥𝑥′
𝑦𝑦′
1
� = �

1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

� �
𝑥𝑥
𝑦𝑦
1
�

How to determine the parameters of an AT?
Calculate: �̂�𝑝 = arg min∑ ‖𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑝𝑝) − 𝑥𝑥𝑖𝑖′‖2𝑖𝑖

�𝑥𝑥′𝑦𝑦′� = �
𝑝𝑝1 𝑝𝑝2 𝑝𝑝3
𝑝𝑝4 𝑝𝑝5 𝑝𝑝6� �

𝑥𝑥
𝑦𝑦
1
�

�𝑥𝑥′𝑦𝑦′� = �
𝑥𝑥 𝑦𝑦 1 0 0 0
0 0 0 𝑥𝑥 𝑦𝑦 1�

⎣
⎢
⎢
⎢
⎢
⎡
𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
𝑝𝑝4
𝑝𝑝5
𝑝𝑝6⎦
⎥
⎥
⎥
⎥
⎤

And then, we stack all the points to get 𝑏𝑏 = 𝐴𝐴𝑥𝑥. The
problem is now 𝑥𝑥� = arg min(𝐴𝐴𝑥𝑥 − 𝑏𝑏).

𝑥𝑥� = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝑏𝑏

Projective Transformation (Homography)
Skipped section: DLT and RANSAC.
Determining the homography matrix

�−𝑥𝑥 −𝑦𝑦 −1 0 0 0 𝑥𝑥𝑥𝑥′ 𝑦𝑦𝑥𝑥′ 𝑥𝑥′

0 0 0 −𝑥𝑥 −𝑦𝑦 −1 𝑥𝑥𝑦𝑦′ 𝑦𝑦𝑦𝑦′ 𝑦𝑦′�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
ℎ6
ℎ7
ℎ8
ℎ9⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0

Solve with SVD.

Things to remember
Find key points & compute descriptors > match
descriptors > vote for or fit transformation parameters
> return object if # inliers > T.

Lecture 9: Recognition and Modeling
Humans
People Recognition from Visual Input
Graph: nodes + edges
Decomposition of graph: partition of nodes
Multicut: set of edges being cut for the partition

Minimum Cost Multicut Problem
Objective: min

𝑥𝑥∈{0,1}𝐸𝐸
∑ 𝑐𝑐𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟∈𝐸𝐸

Constraint: ∀𝐶𝐶 ∈ 𝑐𝑐𝑐𝑐(𝐺𝐺) ∀𝐻𝐻 ∈ 𝐶𝐶: 𝑥𝑥𝑟𝑟 ≤ ∑ 𝑥𝑥𝑟𝑟′𝑟𝑟′∈𝐶𝐶\{𝑟𝑟}
If there is a cut in a cycle, it can’t be a single cut.

Graph-based modelling by:

• Finding disjoint paths in the graph modelling the
detections (boundary boxes) in each frame over time.
Merge tracks.

• Graph decomposition: keep all the detections
and cut the graph.

Graph decomposition Formulation:
Objective: min

𝑥𝑥∈{0,1}𝑉𝑉,𝑦𝑦∈{0,1}𝐸𝐸
∑ 𝑐𝑐𝑣𝑣𝑥𝑥𝑣𝑣𝑣𝑣∈𝑉𝑉 + ∑ 𝑑𝑑𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟∈𝐸𝐸 .

Consistency: ∀𝐻𝐻 = 𝑣𝑣𝑤𝑤 ∈ 𝐸𝐸:𝑦𝑦𝑣𝑣𝑣𝑣 ≤ 𝑥𝑥𝑣𝑣,𝑦𝑦𝑣𝑣𝑣𝑣 ≤ 𝑥𝑥𝑣𝑣.
Transitivity:
∀𝐶𝐶 ∈ 𝑐𝑐𝑐𝑐(𝐺𝐺) ∀𝐻𝐻 ∈ 𝐶𝐶: (1 − 𝑦𝑦𝑟𝑟) ≤ ∑ (1 − 𝑦𝑦𝑟𝑟′)𝑟𝑟′∈𝐶𝐶\{𝑟𝑟} .

DeepCut: joint edge and node labeling
𝑦𝑦: edge variable: cut or not cut
𝑥𝑥: node variable: the label of the node
The main idea is to take the node labels into
consideration while performing edge cuts.

Generative Human Body Models
SMPL model example.

Lecture 10: Tracking
Follow the movements of something (point, region,
template, part, object, segmentation, pose) or somebody.
Applications: autonomous driving, image editing, sports,
AR/VR, customer tracking, counting in subway/airport.

Track a Point: points having the same color

Mokhles Bouzaien Page 6 of 7 ETH Zürich

𝐸𝐸(ℎ) = [𝐼𝐼0(𝑥𝑥 + ℎ) − 𝐼𝐼1(𝑥𝑥)]2 ≈ [𝐼𝐼0(𝑥𝑥) + ℎ𝐼𝐼0′(𝑥𝑥) − 𝐼𝐼1(𝑥𝑥)]2
𝜕𝜕𝐸𝐸
𝜕𝜕ℎ

= 2𝐼𝐼0′(𝑥𝑥)[𝐼𝐼0(𝑥𝑥) + ℎ𝐼𝐼0′(𝑥𝑥) − 𝐼𝐼1(𝑥𝑥)]
𝜕𝜕𝐸𝐸
𝜕𝜕ℎ

= 0 ⇒ ℎ =
𝐼𝐼1(𝑥𝑥) − 𝐼𝐼0(𝑥𝑥)

𝐼𝐼0′(𝑥𝑥)

Problem 1: zero gradient: nonzero gradients in all
directions are needed.
Problem 2: local minima: the frame rate should be faster
than half-wavelength of the signal.

Track a Template
Problem: template might take a transformation
Lucas-Kanade Template Tracker
From 𝐸𝐸(𝑢𝑢, 𝑣𝑣) = ∑ [𝐼𝐼(𝑥𝑥 + 𝑢𝑢,𝑦𝑦 + 𝑣𝑣) − 𝑇𝑇(𝑥𝑥,𝑦𝑦)]𝑥𝑥,𝑦𝑦

2 which
works only with translation motion
To 𝐸𝐸(𝑝𝑝) = ∑ �𝐼𝐼�𝑊𝑊(𝑥𝑥,𝑝𝑝)� − 𝑇𝑇(𝑥𝑥,𝑦𝑦)�𝑥𝑥,𝑦𝑦

2
Where 𝑇𝑇 is the template and 𝑊𝑊 is a warp function that
generalizes to other motions (affine, projective, etc.).
Using Taylor expansion: ∑ �𝐼𝐼�𝑊𝑊(𝑥𝑥,𝑝𝑝 + Δ𝑝𝑝)� − 𝑇𝑇(𝑥𝑥)�𝑥𝑥

2 =

∑ �𝐼𝐼�𝑊𝑊(𝑥𝑥,𝑝𝑝)� + ∇𝐼𝐼 𝜕𝜕𝑊𝑊
𝜕𝜕𝑝𝑝
Δ𝑝𝑝 − 𝑇𝑇(𝑥𝑥)�𝑥𝑥

2

Mean Shift to track a general region.
Non-parametric feature-space analysis technique to
locate the maxima of a density function.
Choose a region of interest, calculate the center of mass,
and update the region of interest.
Which feature space to use? Color pixels, grayscale,
gradients.

Tracking by detection (use features)
Extract the features present in the reference image and
try to find them in the test image. We use feature
descriptor to describe nearby region for each feature.

Track with a model

Detect the object and perform space-time analysis.

Lecture 11: Image Segmentation
Identify group of pixels that belongs together.

Segmentation as Clustering
K-Means: Use K-Means to form clusters of pixels
depending on their values (grayscale or (R,G,B)). We
can consider spatial information, e.g., (R,G,B,x,y).

Gaussians: assume that points are generated by sampling
a continuous function (generative model). K Gaussian
blobs:

𝑃𝑃(𝑥𝑥|𝜇𝜇𝑏𝑏,𝑉𝑉𝑏𝑏) =
1

�(2𝜋𝜋)𝑑𝑑|𝑉𝑉𝑏𝑏|
exp−

1
2

(𝑥𝑥 − 𝜇𝜇𝑏𝑏)𝑇𝑇𝑉𝑉𝑏𝑏−1(𝑥𝑥 − 𝜇𝜇𝑏𝑏)

The likelihood of observing 𝑥𝑥

𝑃𝑃(𝑥𝑥|𝜃𝜃) = � 𝛼𝛼𝑏𝑏𝑃𝑃(𝑥𝑥|𝜃𝜃𝑏𝑏)
𝐾𝐾

𝑏𝑏=1

where 𝛼𝛼𝑏𝑏 is the probability to select blob b.

Model-free Clustering: Mean-Shift

• Choose features.
• Initialize windows at pixel locations.
• Start mean-shift.
• Merge windows ending at the same peak.

Hough Transforms
Use the structure of shapes to extract them in a
parameter space of limited dimension.
A counter is incremented at each cell where a line pass.
Then we can use mean-shift to detect peaks.

Interactive Segmentation with GraphCuts
Markov Random Fields: {𝑦𝑦𝑖𝑖} are the pixel features (color
or other features) and {𝑥𝑥𝑖𝑖} are the hidden states (e.g.,
back- or foreground).

Field Joint Probability

𝑃𝑃(𝑥𝑥,𝑦𝑦) = �Φ(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑖𝑖

� Ψ�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖�
𝑖𝑖,𝑖𝑖

Energy Function
𝐸𝐸(𝑥𝑥,𝑦𝑦) = log𝑃𝑃(𝑥𝑥,𝑦𝑦)

= � logΦ(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑖𝑖

+ � logΨ�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖�
𝑖𝑖,𝑖𝑖

= �𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑖𝑖

+ � 𝜓𝜓�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖�
𝑖𝑖,𝑖𝑖

𝜙𝜙: unary potentials: how likely is a pixel to be in a certain
state.

𝜓𝜓: pairwise potentials: how different is a pixel label from
that of a neighbor one.

Learning-Based Approaches
K-Nearest Neighbors
Pros
• Simple to implement and understand.
• The distance definition is flexible.
Cons
• Depends on the definition of K.
• Needs to keep the entire data in memory.
• For higher 𝑑𝑑, many samples are needed.

Random Forest
Binary decision trees

Mokhles Bouzaien Page 7 of 7 ETH Zürich

At each internal node, there is a binary question on the
features extracted from the sample (e.g., image patch)
ending in a leaf node.

A random forest consists of an ensemble of different
decision trees. Once trained, a sample is put in on the
top of every tree, and typically the class is the average
of prediction.

Training
Binary stump: thresholding on one feature. During
training, the feature 𝑘𝑘 and the threshold 𝜏𝜏 are
determined for each node.

The gain in class certainty

𝐺𝐺(𝑘𝑘, 𝜏𝜏) = 𝐻𝐻(parent) − �
𝐷𝐷𝑟𝑟𝑟𝑟
𝐷𝐷𝑝𝑝

�𝐻𝐻(rc) − �
𝐷𝐷𝑟𝑟𝑟𝑟
𝐷𝐷𝑝𝑝
�𝐻𝐻(lc)

Where
• 𝐷𝐷𝑛𝑛 = {(𝑣𝑣𝑛𝑛, 𝑐𝑐𝑛𝑛) ∈ Node 𝑛𝑛} : training samples.
• 𝐻𝐻(𝑛𝑛) = ∑ 𝑃𝑃(𝑤𝑤𝑖𝑖) log𝑃𝑃(𝑤𝑤𝑖𝑖)𝑖𝑖 : node entropy
• 𝑃𝑃(𝑤𝑤𝑖𝑖) = ∑ 𝛿𝛿(𝑟𝑟𝑛𝑛=𝑣𝑣𝑖𝑖)

|𝐷𝐷𝑛𝑛|
|𝐷𝐷𝑛𝑛|
𝑛𝑛

• 𝑘𝑘∗, 𝜏𝜏∗ = arg max𝐺𝐺(𝑘𝑘, 𝜏𝜏)

Stopping criterion: a child node is declared leaf node if
one of the criteria is satisfied:
1. All its samples belong to one class.
2. The number of samples is below a threshold.

Pros
• Easy to implement.
• Efficient during testing.
• Can handle high dimensional space.

Cons
• Lots of parametric choices.

• Needs large amount of data.

Lecture 12: Object Class Recognition
Classification
Visual Words: map high-dimensional descriptors to
words by quantizing the feature space. Then, determine
which word to assign to a new image region by finding
the closest cluster center.

Bag-of-Words: histogram of how many times each
feature appeared in the image. To do categorization, we
compare bag-of-words.
Learn a classifier: KNN, SVM.

Limitation of BoW: removes spatial layout: no spatial
relationships between features.
→ This can be solved by Spatial Pyramid
Representation: one histogram for each region.

Pros:
• Flexible to geometry transformations.
• Compact summary of the image content.
• Good results in practice.

Cons:
• Ignores geometry.
• Background and foreground mixed.
• How to generate the vocabulary?

CNNs: the features are learned.
Filtering: convolution (one feature map per filter)
Non-linearity: to model complex mappings.
Pooling: gives robustness to small shift.
Normalization: equalizes the features maps.

Detection
Sliding-window approaches

1. Obtain training data.
2. Define features.
3. Define classifier.

R-CNN

1. Extract region proposals
2. Warp each region into a square
3. Compute CNN features
4. Classify regions (e.g., SVM)

Fast R-CNN
Instead of feeding the region proposals to CNN, the input
image is fed to the CNN to generate a convolutional
feature map. Then, identify region of proposals, warp
and classify them.
Why it’s faster? Convolution is done once per image.

Implicit Shape Model
ISM is a codebook for each class along with a spatial
probability distribution describing where each codebook
entry could be found on the object.

Segmentation
Label each pixel of the image with a category label. This
could be done using CNN: downsamling and upsampling.

--- END ---

