
Mokhles Bouzaien 1 ETH Zürich

Concepts of Object-Oriented Programming
Instructor: Prof. Peter Müller

Contents
1. Introduction ... 1

1.1. Requirements .. 1
1.2. Core Concepts .. 1
1.3. Language Concepts ... 2
1.4. Course Organization ... 2
1.5. Language Design ... 2

2. Types and Subtyping ... 2
2.1. Types .. 2
2.2. Subtyping ... 3
2.3. Behavioral Subtyping ... 4

3. Inheritance ... 4
3.1. Inheritance and Subtyping ... 5
3.2. Dynamic Method Binding ... 5
3.3. Multiple Inheritance ... 5
3.4. Linearization ... 6

4. Types ... 6
4.1. Bytecode Verification ... 6
4.2. Parametric Polymorphism .. 7

5. Information Hiding and Encapsulation .. 8
5.1. Information Hiding ... 8
5.2. Encapsulation ... 8

6. Object Structures and Aliasing .. 9
6.1. Aliasing ... 9
6.2. Problems of Aliasing ... 9
6.3. Readonly Types .. 9
6.4. Ownership Types .. 9

7. Reflection ... 10
7.1. Introspection ... 10

1. Introduction

1.1. Requirements
We have 4 software requirement categories:
• Reuse: quality, interface documentation, adaptability
• Computation as Simulation: real word entities, running simulations.
• GUIs: adaptable standard functionality, concurrency
• Distributed Programming: concurrency, communication

Example: there is no explicit support for extension and adaptability with C,
i.e., we must modify the main structure (e.g., Person) definition and methods
whenever we want to add a substructure (e.g., Student) → code duplication,
difficult to maintain, error prone.

1.2. Core Concepts

1.2.1. Object Model
Object Model: to make the programs reflect the reality they are treating.
• A software system is a set of cooperating objects.
• Objects have state (data), behavior (code) and identity (memory loc).
• Objects exchange messages.

1.2.2. Interfaces and Encapsulation
Interface: publicly accessible fields and methods: describe behavior.
Encapsulation: implementation is hidden behind interface.

1.2.3. Classification and Polymorphism
Classification: hierarchical structure of objects.
Substitution Principle: specialized object is usable if general one is expected.

Mokhles Bouzaien 2 ETH Zürich

Polymorphism: the possibility to use a part of a program in different classes.
• Subtype Polymorphism: using the superclass code.
• Parametric Polymorphism: generic class/method that works with

different types.
• Ad-hoc Polymorphism: method overloading: several methods with

same name and different arguments.

bar(Object o){…};
bar(String s){…};
Object x="Hello";
bar(x);
→ bar(Object o) is used because the static (compile time) type of x is Object,
i.e., the compiler will not know the dynamic type (at runtime).

bar(Object a, String b){…};
bar(String a, String b){…};
bar("Hello", "World");
→ bar(String a, String b) is used because the Java compiler chooses the most
specific method.
NB: a method g is more general than f is any call of f could be handled by g.

bar(Object a, String b){…};
bar(String a, Object b){…};
bar("Hello", "World");
→ Ambiguous call. We can solve that by upcasting a to (Object) "Hello". In
this case, bar(Object a, String b) will be used.

Specialization: adding specific properties and/or refining a concept.

1.3. Language Concepts
Dynamic Method Binding: select the method based on the runtime receiver
object type and not on the static type. Why? To select the most specific
method at runtime.

1.4. Course Organization

1.5. Language Design

What is a Good OO-Language?
A good language should resolve design trade-offs in a way suitable for its
application domain.

Design Goals
• Simplicity: syntax and semantics can easily be understood (Pascal, C)
• Expressiveness: can easily express complex processes (C#, Scala, Python)
• (Static) Safety: allow errors to be discovered ideally at compile time

(Java, C#, Scala)
• Modularity: modules can be compiled separately (Java, C#, Scala)
• Performance: programs can be executed efficiently (C, C++)
• Productivity: low cost of writing programs (Visual Basic, Python)
• Backwards Compatibility: newer versions work and interface with older

versions programs (Java, C)

2. Types and Subtyping

2.1. Types
A type system is a tractable syntactic (based on form not behavior) for
proving absence of certain program behaviors by classifying phrases
(expressions, methods) according to the kinds (types) of values they compute.

Weak & Strong Type Systems
• Untyped: do not classify values into types (assembly language).
• Weakly-typed: classify into types but do not enforce restrictions (C,

C++).
• Strongly-typed: enforce that all operations are applied to the appropriate

types (C#, Java, Python).

Mokhles Bouzaien 3 ETH Zürich

A type is a set of values sharing the same properties.
• Nominal types: based on type names (C++, Eiffel, Java)
• Structural types: based on the availability of methods and fields (Python)

Static Type Checking: each expression has a type + Types are declared
explicitly + Type rules are used at compile time.
Dynamic Type Checking: variable, methods and expressions are typically not
typed + run-time system checks expected arguments.

Static Type Safety: being able to catch type errors at compile time. This
invariant is guaranteed: “In every execution state, the value held by variable
𝑣𝑣 is an element of the declared type of 𝑣𝑣”. This can prevent run-time errors.

Bypass Static Type Checks: C# example:
dynamic v = getPythonObject();
dynamic res = v.Foo(5);

We can also force Static Typing to Dynamic Type Languages (e.g., mypy for
Python): it is called regular typing.

2.2. Subtyping
Syntactic Classification: subtype object can understand at least the messages
that supertype objects can understand.
Semantic Classification: subtype objects provide at least the behavior of super
objects.

Subtype relation = Subset relation

In Nominal type systems: determine subtype relations based on explicit
declarations e.g., class T extends S {…}.
In Structural type systems: determine subtype relations based on availability
of methods and fields e.g., class S {m(int){}} and class T {m(int){}; n(){}}.

Subtype objects have wider interfaces than supertype objects:

• Existence of methods and fields → subtypes may add but not remove
• Accessibility of methods and fields → overriding method must not be

less accessible (e.g., private, public methods)
• Types of methods and fields

o → overriding methods must not require more specific
parameter types (contravariant parameters rule ≠ invariant
rule (e.g., Java): exactly same parameters)

o → overriding methods must not have a more general result
type (covariant results rule)

o → subtypes must not change the types of fields.

Shortcomings of Nominal Subtyping
→ If we do not have access to the subclasses source code, we can use Adapter
(intermediate class) or Generalization. Example:

interface Person generalizes Resident, Employee{};
→ Nominal subtyping can limit generality (method signature are restrictive).
We can introduce interfaces.

Mokhles Bouzaien 4 ETH Zürich

2.3. Behavioral Subtyping
What are the properties shared by the values of a type?
Method Behavior

• Preconditions must hold in the state before the method execution.
• Postconditions must hold in the state after the method execution.
• Old-expression is used to refer to pre-states from the postcondition

Object Invariants
• Invariants describe consistency criteria for object.

Visible States
• Invariants must hold in pre- and post-states (visible states) of method

executions but may be violated temporarily in between.
History Constraints

• Describe how objects evolve over time.
• Relate visible states.
• Must be reflexive and transitive.

Contracts and Subtyping: Behavioral Subtyping
Preconditions: overriding methods may have weaker preconditions

Postconditions: overriding methods may have stronger postconditions.
Invariants: subtypes may have stronger invariants.
History Constraints: subtypes may have stronger history constraints.

Static Checking of Behavioral Subtyping
If S.m overrides T.m, check that

• PreT.m⇒PreS.m
• PreT.m⇒(PostS.m⇒PostT.m)
• InvS⇒InvT
• ConvS⇒ConvT

Effective Contracts

• PreEffS.m=PreT.m∥PreT'.m∥…
• PostEffS.m=(old(PreS.m)⇒PostS.m)&&(old(PreT.m)⇒PostT.m)&&…

Run-Time Checking
Checking all arguments, heaps and results is not possible at run time.
⇒ Define effective contracts to satisfy behavioral subtyping.

Immutable Types
Objects of immutable types do not change their state after construction (no
setter).
+ No unexpected modification.
+ No inconsistent states.

Inheritance relation between mutable and immutable types: Do not use
optional methods because static safety would be violated (add a setter in the
immutable type that throws an exception: Java does that!).
Clean solution: no subtype relation.

3. Inheritance
Inheritance:

Mokhles Bouzaien 5 ETH Zürich

• Only one object at run time (Student is a Person).
• Relation fixed at compile time.

Aggregation:
• Establishes a “has-a” relation (Car has an Engine).
• Two objects at run time.

3.1. Inheritance and Subtyping

Subtyping: classification (type aspect).
Inheritance: code reuse (reuse aspect).
Subclassing = Subtyping + Inheritance.

How to reuse code without subtyping (Set/BoundedSet example)?
Solution1: Aggregation
BoundedSet uses Set. Method calls are delegated to Set. No subtype relation.
Solution 2: Create New Objects
Polygon addVertex(Vertex v) return new Pentagon(…);
Solution 3: Weak Superclass Contract
Create an abstract super class for both BoundedSet and Set.
Solution 4: Inheritance w/o Subtyping
This solution is supported by some languages.

3.2. Dynamic Method Binding

Rules for Proper Subclassing
• Use subclassing only if there is an “is-a” relation.
• Rely on documentation instead of implementation.
• When involving superclasses, do not mess around with dynamically bound

methods.
• Do not specialize superclasses that are expected to change often.

Binary Methods
Methods that take receiver and one explicit argument, e.g., a.equals(b).

• Solution 1: explicit type test (instanceof + downcast).
• Solution 2: double invocation.
• Solution 3: overloading + Dynamic

(s1 as dynamic).intersect(s2 as dynamic)

3.3. Multiple Inheritance
Ambiguities
Explicit selection (by the client): int w = p.Assistant::workLoad(); (C++)
Merging methods: return Student::workLoad() + Assistant::workLoad();
Renaming (Eiffel): rename test as takeExam

Diamond of Death
NB: field initialization is done from top to bottom (Person then Student then
PhDStudent).
One copy for all virtual inheritance and one copy for every non-virtual
inheritance.

Virtual inheritance: the constructor of the top class must be directly called.

Mokhles Bouzaien 6 ETH Zürich

Memory Layout: nv → copy fields & v → pointer to the fields

3.4. Linearization
Mixins and Traits: methods and state that can be mixed into various classes.
Traits are made to be mixed in and not instantiated by themselves.
trait Backup extends Cell {}
class FancyCell extends Cell with Backup {}

Calculate Linearization
𝐶𝐶 extends 𝐶𝐶′ with 𝐶𝐶1 with … with 𝐶𝐶𝑛𝑛
The linearization 𝐿𝐿(𝐶𝐶) is 𝐶𝐶, 𝐿𝐿(𝐶𝐶𝑛𝑛) ∗ … ∗ 𝐿𝐿(𝐶𝐶1) ∗ 𝐿𝐿(𝐶𝐶′)

Example

PhDStudent uses the Assistant’s workload.

4. Types

4.1. Bytecode Verification
Programs are compiled to bytecode (platform-independent), organized into
classes. Applets get access to system resources only through an API.

Mobile code cannot be trusted: may not be type safe, modify data, expose
personal information, degrade performance (DoS). How to guarantee
security?

Java Bytecode
Load, store: to access local variables.
Puts the intermediate result on the stack and pop them whenever needed.
Simulate the execution of the program on the level of types.
How stack and local variable are modified: i:(S,R)→(S',R').
Example: iadd:(int.int.S,R)→(int.S,R).

Mokhles Bouzaien 7 ETH Zürich

aload: load reference from local variables to stack.
astore: store a reference to local variable.
iconst: load an int onto the stack.
isore: store an int to local variable.

Instructions can have several predecessors: we must check all combinations.
Consider the smallest common supertype (can ignore interfaces and choose
Object type).
Inference: determine the input and output configuration for every instruction.
(+) determine the most general solution that satisfies the rules.
(+) little type information required in class file.
(-) fixpoint calculations may be slow.
(-) solution for interfaces is imprecise and require run-time checks.

Alternative: add type checking to type inference.

Type inference: don’t declare types and the compiler can automatically do it.
Dynamic typing: turn off the static type checking.

4.2. Parametric Polymorphism

T is a parameter. The client choose the type later.

We can’t be sure that T has a specific method. So, we make sure that T is a
subtype of a class having that method (upper bound).

class Queue<T extends Comparable<T>>{}

Covariance: if S<:T then C<S><:C<T> → unsafe when variables are written
by clients.
Contravariance: if S<:T then C<T><:C<S> → unsafe when variables are read
by clients.

Working with Non-Variant Generics (Java)
Solution1: additional type parameters (type parameters for methods)

static <T> void printAll(Collection<T> c)
Solution 2: Wildcards

static void printAll(Collection<?> c)
Different ? could represent different types.
We can use upper and lower bounds for wildcards.
Use-Site Variance:

Random <? extends Person> r= newRandom<Student>();

Compiler

• C<T> is translated to C.
• T is translated to upper bound.
• Casts are added when needed.

In C++, templates are used to allow classes and methods to be parameterized.
Concepts declare syntactical and type constraints.

Mokhles Bouzaien 8 ETH Zürich

Template Meta-Programming: calculations could be done in compile time.

5. Information Hiding and Encapsulation

5.1. Information Hiding
A technique used to reduce dependencies between modules (at compile time).
Class Interfaces: client interface, subclass interface, friend interface.

Express Information Hiding
Java: access modifiers

• Public: client interface
• Protected: subclass + friend interface
• Default access: friend interface (the package)
• Private: implementation (all class methods)

Eiffel: clients clause in feature declarations
• feature { ANY }: client interface
• feature { T }: friend interface for class T
• feature { NONE }: implementation (only “this”-object)

Rules of Overriding
Access Rule: the access modifier of an overriding method must provide at
least as much access as the overridden method.

Override rule: a method Sub.m overrides the superclass method Super.m only
if the latter is accessible from Sub (private methods are never overwritten).

5.2. Encapsulation
A technique for structuring the state of programs (dynamically) by
establishing capsules with clearly defined interfaces.
A capsule can be:

• An object (hidden and exposed parts)
• Object structures
• A class
• All classes of a subtype hierarchy
• A package

It requires a definition of boundaries and interfaces at the boundary.

Consistency of Objects:

• Hide internal representation whenever possible.
• Make consistency criteria explicit (documentation).
• Check interfaces: make sure that criteria are preserved for exported

operations (e.g., subclass methods).

How to check interfaces?

- All exported objects preserve the invariants of the receiver (this).
- All constructors establish the invariants of the new object.

Declaring fields private (e.g., in Java) does not give encapsulation on the level
of individual object, because one object can change private field of another
object of the same class. Eiffel supports object-level encapsulation:
feature { NONE }. How to fix for Java?

- All exported methods and constructors of class T preserve the
invariants of all objects of T.

- All constructors establish the invariants of the new object.

Mokhles Bouzaien 9 ETH Zürich

6. Object Structures and Aliasing
An object structure is set of objects that are connected via references.

6.1. Aliasing
Having different names for the same memory location.
In OOP, an object o is aliased if two or more variables hold references to o
→ efficiency, sharing.
Static (in heap memory): if all references are fields of objects or static fields.
Dynamic (in stack): not static.

6.2. Problems of Aliasing
Aliasing can be used to bypass interface (leaking of reference).

public void setElems(int[] ia){ array = ia;}
Java deals with this problem by restricting subtyping.

6.3. Readonly Types
Aliases are helpful to share side-effects, and cloning is not efficient.
→ grant read access only (restrict the reference not the object).

• Use supertype interfaces having only getters.
- No checks that methods are readonly.
- Clients can use casts to get full access.

• In C++, we can use const Pointers (no field updates).
- The same cast problem.
- Const Pointers are not transitive (fields are not const).

Solutions (C++)?
Pure Methods: no field updates, no non-pure methods, no object creation,
only overridden by pure methods.

Types
Each class or interface T introduces two types: rw T and ro T.

S<:T⇒rw S <: rw T ⋀ ro S <: ro T and rw T <: ro T.
Type Rules: check the “receiver > call” combination.

6.4. Ownership Types
Goal? Get control over aliases. The compiler should distinguish internal
references from other.

Ownership Model

• Each object has 0 or 1 owner objects.
• Objects with same owner are context.
• Ownership is acyclic.
• The heap is structured into a forest of ownership trees.

At run-time, type information is class and owner of each object:

• Peer: same owner as this.
• Rep: owner is this.
• Any: any owner.

public rep Address addr; different Person objects have different Address
objects: no unwanted sharing.

Owner-as-Modifier Discipline = Readonly types + Ownership Types

• Treat any and lost as readonly types.
• Treat self, peer, and rep as readwrite types.

Also:
• Field write e.f=v is valid only if 𝜏𝜏(𝑒𝑒) is self, peer, or rep.

Mokhles Bouzaien 10 ETH Zürich

• Method call e.m(…) is valid only if 𝜏𝜏(𝑒𝑒) is self, peer, or rep, or 𝑚𝑚 is
pure.

⇒ rep and any types enable encapsulation of whole object structure, which
cannot be violated by subclasses, via casts, etc.

7. Reflection
A program can observe and modify its own structure and behavior.

7.1. Introspection
It is about observing the structure and behavior.
Class Object

Use f.setAccessible(true); before getting the value of a field f.

_ END _

	1. Introduction
	1.1. Requirements
	1.2. Core Concepts
	1.2.1. Object Model
	1.2.2. Interfaces and Encapsulation
	1.2.3. Classification and Polymorphism

	1.3. Language Concepts
	1.4. Course Organization
	1.5. Language Design

	2. Types and Subtyping
	2.1. Types
	2.2. Subtyping
	2.3. Behavioral Subtyping

	3. Inheritance
	3.1. Inheritance and Subtyping
	3.2. Dynamic Method Binding
	3.3. Multiple Inheritance
	3.4. Linearization

	4. Types
	4.1. Bytecode Verification
	4.2. Parametric Polymorphism

	5. Information Hiding and Encapsulation
	5.1. Information Hiding
	5.2. Encapsulation

	6. Object Structures and Aliasing
	6.1. Aliasing
	6.2. Problems of Aliasing
	6.3. Readonly Types
	6.4. Ownership Types

	7. Reflection
	7.1. Introspection

